Skip to content

ankushtagore/scaling_system

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 

Repository files navigation

🚀 Duovarsity System Scaling Strategy: 1 Million Concurrent Users

📊 Current System Analysis

Architecture Assessment

Backend (Python/FastAPI)

  • Strengths: Clean MVC architecture, extensive AI/ML services, robust database models
  • Bottlenecks: Single instance deployment, synchronous processing, limited connection pooling
  • Services: 87 services including CrewAI, Azure AI, RAG, content generation

Frontend (React/TypeScript)

  • Strengths: Comprehensive API hooks, React Query caching
  • Bottlenecks: Single axios instance, 45s timeouts, inefficient token caching
  • API Layer: 2018 lines with basic optimization

Database (PostgreSQL)

  • Current: Single instance with basic connection pooling (20-30 connections)
  • Models: 82+ models covering users, courses, progress, payments, AI content

🎯 PHASE 1: Immediate Optimizations (Month 1-2)

1. Database Layer Scaling

-- Connection Pool Optimization
-- Current: 20-30 connections
-- Target: 1000+ connections per instance

-- Read Replicas Setup
CREATE DATABASE Duovarsity_read_replica_1;
CREATE DATABASE Duovarsity_read_replica_2;
CREATE DATABASE Duovarsity_read_replica_3;

-- Implement Database Sharding
-- User Shard: Hash-based on user_id
-- Course Shard: Range-based on course_id
-- Content Shard: Time-based for analytics

-- Index Optimization for High Traffic
CREATE INDEX CONCURRENTLY idx_users_email_hash ON users USING HASH(email);
CREATE INDEX CONCURRENTLY idx_course_access_composite ON user_course_enrollment(user_id, course_id, status);
CREATE INDEX CONCURRENTLY idx_progress_time_series ON user_progress(user_id, updated_at);

2. Backend API Optimization

# Enhanced Database Configuration
# File: newshiksha-backend/app/database.py

from sqlalchemy.pool import QueuePool
from sqlalchemy.engine import create_engine

def get_optimized_engine():
    return create_async_engine(
        settings.database_url,
        echo=False,  # Disable in production
        pool_pre_ping=True,
        pool_recycle=300,
        pool_size=100,        # Increased from 20
        max_overflow=200,     # Increased from 30  
        pool_timeout=30,
        poolclass=QueuePool,
        # Connection pool optimization
        connect_args={
            "server_settings": {
                "application_name": "Duovarsity_api",
                "jit": "off"  # Disable JIT for faster connections
            },
            "prepared_statement_cache_size": 0,
            "statement_cache_size": 0
        }
    )

# Request Processing Pipeline
class HighThroughputAPI:
    def __init__(self):
        self.request_queue = asyncio.PriorityQueue(maxsize=10000)
        self.rate_limiter = RateLimiter(requests_per_second=1000)
        self.circuit_breaker = CircuitBreaker()
        
    async def process_request(self, request):
        # Rate limiting
        await self.rate_limiter.acquire()
        
        # Circuit breaker for AI services
        if self.circuit_breaker.is_open:
            return await self.fallback_response(request)
            
        # Process with connection pooling
        async with self.db_pool.acquire() as conn:
            return await self.execute_request(request, conn)

3. Frontend Performance Optimization

// Enhanced API Configuration
// File: Duovarsity/frontend/src/lib/api.ts

// Optimized Query Client
export const queryClient = new QueryClient({
  defaultOptions: {
    queries: {
      staleTime: 30 * 60 * 1000,      // 30 minutes (increased)
      gcTime: 2 * 60 * 60 * 1000,     // 2 hours (increased)
      retry: 3,
      retryDelay: (attemptIndex) => Math.min(1000 * 2 ** attemptIndex, 5000),
      refetchOnWindowFocus: false,
      refetchOnReconnect: true,
      // Add request deduplication
      structuralSharing: true,
    },
  },
});

// Connection Pooling for Frontend
class OptimizedAxiosClient {
  private pool: ConnectionPool;
  private cache: LRUCache<string, any>;
  
  constructor() {
    this.pool = new ConnectionPool({
      maxConnections: 50,
      keepAlive: true,
      timeout: 30000
    });
    
    this.cache = new LRUCache({
      max: 1000,
      ttl: 5 * 60 * 1000  // 5 minutes
    });
  }
  
  async request<T>(config: RequestConfig): Promise<T> {
    // Check cache first
    const cacheKey = this.generateCacheKey(config);
    const cached = this.cache.get(cacheKey);
    if (cached) return cached;
    
    // Use connection pool
    const connection = await this.pool.acquire();
    try {
      const result = await connection.request(config);
      this.cache.set(cacheKey, result);
      return result;
    } finally {
      this.pool.release(connection);
    }
  }
}

🏗️ PHASE 2: Microservices Architecture (Month 3-4)

Service Decomposition

# Kubernetes Deployment Configuration
apiVersion: apps/v1
kind: Deployment
metadata:
  name: Duovarsity-api-gateway
spec:
  replicas: 50
  selector:
    matchLabels:
      app: Duovarsity-api-gateway
  template:
    spec:
      containers:
        - name: api-gateway
          image: Duovarsity/api-gateway:latest
          resources:
            requests:
              memory: "256Mi"
              cpu: "250m"
            limits:
              memory: "512Mi"
              cpu: "500m"
          env:
            - name: RATE_LIMIT_PER_SECOND
              value: "1000"
            - name: MAX_CONCURRENT_REQUESTS
              value: "10000"

---
# AI Processing Service
apiVersion: apps/v1
kind: Deployment  
metadata:
  name: Duovarsity-ai-service
spec:
  replicas: 100
  selector:
    matchLabels:
      app: Duovarsity-ai-service
  template:
    spec:
      containers:
        - name: ai-service
          image: Duovarsity/ai-service:latest
          resources:
            requests:
              memory: "1Gi"
              cpu: "500m"
              nvidia.com/gpu: 1
            limits:
              memory: "4Gi"
              cpu: "2000m"
              nvidia.com/gpu: 1

---
# Course Content Service
apiVersion: apps/v1
kind: Deployment
metadata:
  name: Duovarsity-content-service
spec:
  replicas: 30
  selector:
    matchLabels:
      app: Duovarsity-content-service

Service Mesh Configuration

# Service Registry and Discovery
class ServiceRegistry:
    def __init__(self):
        self.services = {
            "user-service": {"instances": 20, "health_check": "/health"},
            "course-service": {"instances": 30, "health_check": "/health"},
            "ai-service": {"instances": 100, "health_check": "/health"},
            "content-service": {"instances": 25, "health_check": "/health"},
            "payment-service": {"instances": 10, "health_check": "/health"}
        }
        
    async def route_request(self, service_name: str, request):
        # Load balancing with health checks
        healthy_instances = await self.get_healthy_instances(service_name)
        selected_instance = self.round_robin_select(healthy_instances)
        return await selected_instance.process(request)

# Circuit Breaker Pattern
class CircuitBreaker:
    def __init__(self, failure_threshold=5, recovery_timeout=60):
        self.failure_count = 0
        self.failure_threshold = failure_threshold
        self.recovery_timeout = recovery_timeout
        self.last_failure_time = None
        self.state = "CLOSED"  # CLOSED, OPEN, HALF_OPEN
        
    async def call(self, func, *args, **kwargs):
        if self.state == "OPEN":
            if self.should_attempt_reset():
                self.state = "HALF_OPEN"
            else:
                raise CircuitBreakerOpen("Service temporarily unavailable")
                
        try:
            result = await func(*args, **kwargs)
            self.on_success()
            return result
        except Exception as e:
            self.on_failure()
            raise e

🚀 PHASE 3: AI/ML Infrastructure Scaling (Month 5-6)

Multi-Model AI Strategy

# Cost-Optimized AI Service
class ScalableAIService:
    def __init__(self):
        self.model_pool = {
            "gpt-4": {
                "cost_per_token": 0.00003,
                "quality_score": 0.95,
                "max_rpm": 10000,
                "instances": 50
            },
            "gpt-3.5-turbo": {
                "cost_per_token": 0.000002,
                "quality_score": 0.85,
                "max_rpm": 50000,
                "instances": 100
            },
            "azure-openai": {
                "cost_per_token": 0.000015,
                "quality_score": 0.90,
                "max_rpm": 30000,
                "instances": 75
            },
            "self-hosted-llama": {
                "cost_per_token": 0.000001,
                "quality_score": 0.80,
                "max_rpm": 100000,
                "instances": 200
            }
        }
        
        self.request_router = IntelligentRouter()
        self.result_cache = RedisCluster()
        
    async def process_request(self, request: AIRequest):
        # Check cache first (95% hit rate target)
        cache_key = self.generate_cache_key(request)
        cached_result = await self.result_cache.get(cache_key)
        if cached_result:
            return cached_result
            
        # Route to optimal model
        optimal_model = await self.request_router.select_model(
            request, self.model_pool
        )
        
        # Process with selected model
        result = await optimal_model.process(request)
        
        # Cache result
        await self.result_cache.set(
            cache_key, result, ttl=3600
        )
        
        return result

# Intelligent Request Routing
class IntelligentRouter:
    async def select_model(self, request: AIRequest, model_pool):
        factors = {
            "complexity": self.analyze_complexity(request),
            "user_tier": request.user.subscription_tier,
            "urgency": request.priority,
            "cost_budget": request.user.cost_allocation,
            "quality_requirement": request.min_quality_score
        }
        
        # Smart routing logic
        if factors["user_tier"] == "premium" and factors["quality_requirement"] > 0.9:
            return model_pool["gpt-4"]
        elif factors["complexity"] < 0.5:
            return model_pool["self-hosted-llama"]
        else:
            return model_pool["azure-openai"]

GPU Cluster Management

# GPU Resource Management
class GPUClusterManager:
    def __init__(self):
        self.gpu_nodes = {
            "node-1": {"gpus": 8, "model": "A100", "memory": "80GB"},
            "node-2": {"gpus": 8, "model": "A100", "memory": "80GB"},
            "node-3": {"gpus": 4, "model": "V100", "memory": "32GB"},
            # ... scale to 1000+ GPUs
        }
        
        self.model_instances = {}
        self.load_balancer = GPULoadBalancer()
        
    async def allocate_gpu(self, model_name: str, request_load: int):
        # Find optimal GPU allocation
        optimal_node = await self.find_optimal_node(model_name, request_load)
        
        # Load model if not cached
        if model_name not in self.model_instances:
            await self.load_model(model_name, optimal_node)
            
        return optimal_node

    async def auto_scale(self):
        # Monitor GPU utilization
        avg_utilization = await self.get_avg_gpu_utilization()
        
        if avg_utilization > 0.8:
            # Scale up
            await self.provision_additional_nodes()
        elif avg_utilization < 0.3:
            # Scale down
            await self.deallocate_idle_nodes()

💾 PHASE 4: Advanced Caching Strategy

Multi-Layer Caching Architecture

# Redis Cluster Configuration
class CachingStrategy:
    def __init__(self):
        # Layer 1: Application Cache (In-Memory)
        self.l1_cache = LRUCache(maxsize=10000, ttl=300)
        
        # Layer 2: Redis Cluster (Distributed)
        self.l2_cache = RedisCluster(
            nodes=[
                {"host": "redis-1", "port": 6379},
                {"host": "redis-2", "port": 6379},
                {"host": "redis-3", "port": 6379}
            ],
            max_connections=1000,
            retry_on_timeout=True
        )
        
        # Layer 3: CDN Cache (Global)
        self.l3_cache = CloudflareCDN()
        
    async def get(self, key: str):
        # Try L1 cache first
        result = self.l1_cache.get(key)
        if result:
            return result
            
        # Try L2 cache
        result = await self.l2_cache.get(key)
        if result:
            self.l1_cache.set(key, result)
            return result
            
        # Try L3 cache
        result = await self.l3_cache.get(key)
        if result:
            await self.l2_cache.set(key, result, ttl=3600)
            self.l1_cache.set(key, result)
            return result
            
        return None
        
    async def set(self, key: str, value: any, ttl: int = 3600):
        # Set in all layers
        self.l1_cache.set(key, value)
        await self.l2_cache.set(key, value, ttl)
        await self.l3_cache.set(key, value, ttl=86400)

# Content-Specific Caching
class ContentCacheManager:
    def __init__(self):
        self.course_cache = TTLCache(maxsize=50000, ttl=1800)      # 30 min
        self.user_cache = TTLCache(maxsize=1000000, ttl=900)       # 15 min  
        self.ai_cache = TTLCache(maxsize=100000, ttl=3600)         # 1 hour
        self.static_cache = TTLCache(maxsize=10000, ttl=86400)     # 24 hours

Cache Invalidation Strategy

# Smart Cache Invalidation
class CacheInvalidator:
    def __init__(self):
        self.dependency_graph = {
            "user_profile": ["user_courses", "user_progress", "recommendations"],
            "course_content": ["course_cache", "related_courses"],
            "ai_model_response": ["similar_queries", "user_history"]
        }
        
    async def invalidate_cascade(self, cache_key: str):
        # Invalidate dependent caches
        dependents = self.dependency_graph.get(cache_key, [])
        
        tasks = []
        for dependent in dependents:
            tasks.append(self.invalidate_cache(dependent))
            
        await asyncio.gather(*tasks)
        
    async def selective_invalidation(self, user_id: str, action: str):
        # Invalidate only relevant caches based on user action
        if action == "course_completion":
            await self.invalidate_user_progress(user_id)
            await self.invalidate_recommendations(user_id)
        elif action == "profile_update":
            await self.invalidate_user_profile(user_id)

📈 PHASE 5: Real-Time Features & WebSockets

WebSocket Infrastructure

# WebSocket Connection Manager
class WebSocketManager:
    def __init__(self):
        self.active_connections: Dict[str, List[WebSocket]] = {}
        self.user_sessions: Dict[str, Set[str]] = {}
        self.connection_pool = ConnectionPool(max_size=100000)
        
    async def connect(self, websocket: WebSocket, user_id: str):
        await websocket.accept()
        
        if user_id not in self.active_connections:
            self.active_connections[user_id] = []
            self.user_sessions[user_id] = set()
            
        session_id = str(uuid.uuid4())
        self.active_connections[user_id].append(websocket)
        self.user_sessions[user_id].add(session_id)
        
        # Send welcome message
        await websocket.send_json({
            "type": "connection_established",
            "session_id": session_id,
            "user_id": user_id
        })
        
    async def broadcast_to_user(self, user_id: str, message: dict):
        if user_id in self.active_connections:
            connections = self.active_connections[user_id]
            tasks = []
            
            for connection in connections:
                tasks.append(self.safe_send(connection, message))
                
            await asyncio.gather(*tasks, return_exceptions=True)
            
    async def broadcast_progress_update(self, user_id: str, progress_data: dict):
        message = {
            "type": "progress_update",
            "data": progress_data,
            "timestamp": datetime.utcnow().isoformat()
        }
        await self.broadcast_to_user(user_id, message)

# Real-time Progress Tracking
class RealTimeProgressTracker:
    def __init__(self, websocket_manager: WebSocketManager):
        self.ws_manager = websocket_manager
        self.progress_cache = RedisCache()
        
    async def update_progress(self, user_id: str, lesson_id: str, progress: float):
        # Update database
        await self.update_db_progress(user_id, lesson_id, progress)
        
        # Update cache
        cache_key = f"progress:{user_id}:{lesson_id}"
        await self.progress_cache.set(cache_key, progress)
        
        # Broadcast to user's active sessions
        await self.ws_manager.broadcast_progress_update(user_id, {
            "lesson_id": lesson_id,
            "progress": progress,
            "completed": progress >= 100.0
        })

🔧 PHASE 6: Monitoring & Observability

Comprehensive Monitoring Stack

# Metrics Collection System
class MetricsCollector:
    def __init__(self):
        self.prometheus = PrometheusMetrics()
        self.jaeger = JaegerTracing()
        self.grafana = GrafanaDashboards()
        
    async def collect_system_metrics(self):
        metrics = {
            # Performance Metrics
            "api_requests_per_second": await self.get_requests_per_second(),
            "api_response_time_p95": await self.get_response_time_percentile(95),
            "api_response_time_p99": await self.get_response_time_percentile(99),
            "error_rate": await self.get_error_rate(),
            
            # Infrastructure Metrics  
            "cpu_utilization": await self.get_cpu_utilization(),
            "memory_utilization": await self.get_memory_utilization(),
            "database_connections": await self.get_db_connection_count(),
            "cache_hit_rate": await self.get_cache_hit_rate(),
            
            # Business Metrics
            "active_users": await self.get_active_user_count(),
            "concurrent_sessions": await self.get_concurrent_sessions(),
            "ai_requests_per_minute": await self.get_ai_request_rate(),
            "course_completions": await self.get_course_completion_rate(),
            
            # Cost Metrics
            "ai_api_costs": await self.get_ai_api_costs(),
            "infrastructure_costs": await self.get_infrastructure_costs(),
            "cost_per_active_user": await self.calculate_cost_per_user()
        }
        
        await self.prometheus.push_metrics(metrics)
        return metrics

# Alerting System
class AlertManager:
    def __init__(self):
        self.alert_rules = {
            "high_error_rate": {
                "threshold": 0.05,
                "duration": "2m",
                "severity": "critical"
            },
            "high_latency": {
                "threshold": 2.0,
                "duration": "5m", 
                "severity": "warning"
            },
            "low_cache_hit_rate": {
                "threshold": 0.8,
                "duration": "10m",
                "severity": "warning"
            },
            "high_ai_costs": {
                "threshold": 10000,  # $10k per hour
                "duration": "1h",
                "severity": "critical"
            }
        }
        
    async def check_alerts(self, metrics: dict):
        alerts = []
        
        for rule_name, rule_config in self.alert_rules.items():
            if await self.evaluate_rule(rule_name, rule_config, metrics):
                alert = self.create_alert(rule_name, rule_config, metrics)
                alerts.append(alert)
                
        if alerts:
            await self.send_alerts(alerts)
            
        return alerts

💰 Cost Optimization Strategy

Monthly Cost Breakdown (1M Concurrent Users)

infrastructure_costs:
  compute:
    api_gateway: $8,000      # 50 instances
    ai_service: $75,000      # 100 GPU instances  
    content_service: $15,000 # 30 instances
    user_service: $8,000     # 20 instances
    database: $12,000        # Managed PostgreSQL cluster
    total_compute: $118,000

  storage_and_caching:
    database_storage: $3,000    # 50TB
    redis_cluster: $5,000       # 100GB memory
    object_storage: $2,000      # 500TB
    cdn: $1,500                 # Global CDN
    total_storage: $11,500

  ai_and_ml:
    openai_api: $150,000        # 2B tokens/month
    azure_openai: $50,000       # Fallback service
    self_hosted_models: $30,000 # GPU electricity + maintenance
    total_ai: $230,000

  networking:
    load_balancers: $2,000
    bandwidth: $5,000
    total_networking: $7,000

total_monthly_cost: $366,500
cost_per_active_user: $0.37
cost_per_request: $0.00012

Cost Optimization Strategies

# Cost-Aware Request Routing
class CostOptimizedAI:
    def __init__(self):
        self.cost_matrix = {
            "gpt-4": {"quality": 0.95, "cost": 0.00003, "speed": 0.7},
            "gpt-3.5": {"quality": 0.85, "cost": 0.000002, "speed": 0.9},
            "claude-3": {"quality": 0.90, "cost": 0.000015, "speed": 0.8},
            "llama-70b": {"quality": 0.80, "cost": 0.000001, "speed": 0.6}
        }
        
        self.budget_allocator = BudgetAllocator()
        
    async def route_request(self, request: AIRequest) -> str:
        user_budget = await self.budget_allocator.get_user_budget(request.user_id)
        
        # Route based on multiple factors
        if request.priority == "high" and user_budget.remaining > 1000:
            return "gpt-4"
        elif request.complexity < 0.5:
            return "llama-70b"  # Self-hosted for simple requests
        elif user_budget.tier == "premium":
            return "claude-3"
        else:
            return "gpt-3.5"

# Auto-scaling Based on Demand
class IntelligentAutoScaler:
    def __init__(self):
        self.scaling_policies = {
            "api_servers": {
                "min_replicas": 20,
                "max_replicas": 200,
                "target_cpu": 70,
                "scale_up_cooldown": 60,
                "scale_down_cooldown": 300
            },
            "ai_workers": {
                "min_replicas": 50,
                "max_replicas": 500,
                "target_queue_length": 100,
                "scale_up_cooldown": 180,
                "scale_down_cooldown": 600
            }
        }
        
    async def auto_scale(self):
        current_metrics = await self.get_current_metrics()
        
        for service, policy in self.scaling_policies.items():
            target_replicas = await self.calculate_target_replicas(
                service, current_metrics, policy
            )
            
            if target_replicas != current_metrics[f"{service}_replicas"]:
                await self.scale_service(service, target_replicas)

🔮 Expected Performance Metrics

Target Performance (1M Concurrent Users)

performance_targets:
  latency:
    api_response_p50: 50ms
    api_response_p95: 200ms 
    api_response_p99: 500ms
    
  throughput:
    requests_per_second: 50000
    ai_requests_per_second: 5000
    websocket_messages_per_second: 100000
    
  reliability:
    uptime: 99.99%
    error_rate: <0.1%
    data_durability: 99.999999999%
    
  scalability:
    max_concurrent_users: 1000000
    auto_scale_time: <60s
    database_read_replicas: 10
    
  efficiency:
    cache_hit_rate: >95%
    ai_cache_hit_rate: >90%
    cpu_utilization: 60-80%
    memory_utilization: 70-85%

🚀 Implementation Timeline

12-Month Roadmap

Months 1-2: Foundation

  • ✅ Optimize database connections and queries
  • ✅ Implement Redis clustering
  • ✅ Add connection pooling
  • ✅ Frontend API optimization

Months 3-4: Microservices

  • ✅ Break monolith into microservices
  • ✅ Implement service mesh
  • ✅ Deploy Kubernetes cluster
  • ✅ Add load balancing

Months 5-6: AI Scaling

  • ✅ Set up GPU cluster
  • ✅ Implement multi-model AI routing
  • ✅ Add request queuing
  • ✅ Optimize AI costs

Months 7-8: Real-time Features

  • ✅ WebSocket infrastructure
  • ✅ Real-time progress tracking
  • ✅ Live notifications
  • ✅ Collaborative features

Months 9-10: Advanced Caching

  • ✅ Multi-layer caching
  • ✅ CDN integration
  • ✅ Cache optimization
  • ✅ Smart invalidation

Months 11-12: Monitoring & Optimization

  • ✅ Comprehensive monitoring
  • ✅ Performance tuning
  • ✅ Cost optimization
  • ✅ Load testing

🚀 Deep Dive: Latency Optimization & Dynamic Architecture for Duovarsity

Based on my analysis of your system, here's a comprehensive guide for ultra-low latency optimization, message queues, Apache services integration, and dynamic architecture patterns.

📊 Current System Latency Analysis

Identified Bottlenecks

# Current Performance Issues
bottlenecks = {
    "database": {
        "connection_pool": "20-30 connections (insufficient for 1M users)",
        "query_optimization": "No query plan caching",
        "connection_latency": "50-100ms per new connection",
        "read_replicas": "None (all reads hit primary DB)"
    },
    "api_layer": {
        "synchronous_processing": "All AI requests block thread",
        "single_axios_instance": "Frontend bottleneck",
        "no_request_batching": "Each request creates new connection",
        "background_tasks": "Using FastAPI BackgroundTasks (limited)"
    },
    "caching": {
        "in_memory_only": "No distributed caching",
        "cache_misses": "No multi-layer caching strategy",
        "ttl_strategy": "Basic TTL without intelligent invalidation"
    },
    "real_time": {
        "no_websockets": "Polling-based updates",
        "sse_implementation": "Basic Server-Sent Events only",
        "no_message_queue": "Direct database writes for all updates"
    }
}

🎯 Phase 1: Ultra-Low Latency Architecture

1. Advanced Connection Pooling & Database Optimization

# Enhanced Database Configuration
# File: newshiksha-backend/app/database.py

import asyncpg
from sqlalchemy.pool import NullPool
from sqlalchemy.ext.asyncio import create_async_engine
import redis.asyncio as redis
from contextlib import asynccontextmanager

class OptimizedDatabaseManager:
    def __init__(self):
        # Connection pool for different workloads
        self.pools = {
            "read_heavy": None,    # For course content, user profiles
            "write_heavy": None,   # For progress updates, analytics
            "ai_processing": None, # For AI content generation
            "real_time": None     # For WebSocket/real-time features
        }
        
        # Redis cluster for caching
        self.redis_cluster = None
        
    async def initialize_pools(self):
        """Initialize optimized connection pools"""
        
        # Read-heavy pool (larger, longer-lived connections)
        self.pools["read_heavy"] = create_async_engine(
            settings.database_url,
            poolclass=NullPool,  # Use external pool
            echo=False,
            pool_pre_ping=False,  # Skip for performance
            pool_recycle=-1,      # No recycling for read replicas
            connect_args={
                "server_settings": {
                    "jit": "off",
                    "default_transaction_isolation": "read committed",
                    "statement_timeout": "30000",  # 30 seconds
                },
                "command_timeout": 30,
                "prepared_statement_cache_size": 100,
            }
        )
        
        # Write-heavy pool (optimized for inserts/updates)
        self.pools["write_heavy"] = create_async_engine(
            settings.database_url.replace("read-replica", "primary"),
            poolclass=NullPool,
            echo=False,
            connect_args={
                "server_settings": {
                    "synchronous_commit": "off",  # Async commits for speed
                    "wal_writer_delay": "10ms",
                    "commit_delay": "100",
                },
                "command_timeout": 10,
            }
        )
        
        # AI processing pool (long-running connections)
        self.pools["ai_processing"] = create_async_engine(
            settings.database_url,
            poolclass=NullPool,
            connect_args={
                "server_settings": {
                    "statement_timeout": "300000",  # 5 minutes for AI
                    "idle_in_transaction_session_timeout": "600000",
                },
                "command_timeout": 300,
            }
        )
        
        # Real-time pool (very fast, short-lived)
        self.pools["real_time"] = create_async_engine(
            settings.database_url,
            poolclass=NullPool,
            connect_args={
                "server_settings": {
                    "statement_timeout": "5000",  # 5 seconds max
                },
                "command_timeout": 5,
            }
        )
        
        # Initialize Redis cluster
        self.redis_cluster = redis.RedisCluster(
            host="localhost", 
            port=7000,
            max_connections=1000,
            retry_on_timeout=True,
            health_check_interval=30
        )

    @asynccontextmanager
    async def get_connection(self, pool_type: str = "read_heavy"):
        """Get optimized connection for specific workload"""
        pool = self.pools[pool_type]
        async with pool.begin() as conn:
            yield conn

# Enhanced Query Optimization
class QueryOptimizer:
    def __init__(self, db_manager: OptimizedDatabaseManager):
        self.db_manager = db_manager
        self.query_cache = {}
        
    async def execute_optimized_query(self, query: str, params: dict, cache_ttl: int = 300):
        """Execute query with intelligent caching and optimization"""
        
        # Generate cache key
        cache_key = f"query:{hash(query)}:{hash(str(sorted(params.items())))}"
        
        # Try cache first
        cached_result = await self.db_manager.redis_cluster.get(cache_key)
        if cached_result:
            return json.loads(cached_result)
            
        # Determine optimal pool based on query type
        pool_type = self._analyze_query_type(query)
        
        # Execute query
        async with self.db_manager.get_connection(pool_type) as conn:
            result = await conn.execute(query, params)
            
        # Cache result
        await self.db_manager.redis_cluster.setex(
            cache_key, cache_ttl, json.dumps(result)
        )
        
        return result
        
    def _analyze_query_type(self, query: str) -> str:
        """Analyze query to determine optimal connection pool"""
        query_lower = query.lower()
        
        if any(keyword in query_lower for keyword in ["select", "with"]):
            return "read_heavy"
        elif any(keyword in query_lower for keyword in ["insert", "update", "delete"]):
            return "write_heavy"
        elif "ai_" in query_lower or "content_generation" in query_lower:
            return "ai_processing"
        else:
            return "real_time"

2. Advanced Message Queue Implementation

# Message Queue System with Apache Kafka + Redis
# File: newshiksha-backend/app/services/message_queue_service.py

import asyncio
import json
from typing import Dict, Any, Callable, List
from dataclasses import dataclass
from enum import Enum
import aiokafka
import redis.asyncio as redis
from datetime import datetime, timedelta

class MessagePriority(Enum):
    REAL_TIME = 1      # <50ms processing (user interactions)
    HIGH = 2           # <500ms processing (AI responses)
    MEDIUM = 3         # <5s processing (content generation)
    LOW = 4            # <30s processing (batch operations)
    BACKGROUND = 5     # Async processing (analytics)

@dataclass
class Message:
    id: str
    topic: str
    payload: Dict[str, Any]
    priority: MessagePriority
    created_at: datetime
    retry_count: int = 0
    max_retries: int = 3
    correlation_id: str = None

class AdvancedMessageQueue:
    def __init__(self):
        # Kafka for high-throughput, persistent messaging
        self.kafka_producer = None
        self.kafka_consumer = None
        
        # Redis for real-time, low-latency messaging
        self.redis = None
        self.redis_streams = {}
        
        # Message handlers
        self.handlers: Dict[str, Callable] = {}
        
        # Performance monitoring
        self.metrics = {
            "messages_sent": 0,
            "messages_processed": 0,
            "processing_times": {},
            "error_rates": {}
        }
        
    async def initialize(self):
        """Initialize message queue systems"""
        
        # Initialize Kafka
        self.kafka_producer = aiokafka.AIOKafkaProducer(
            bootstrap_servers=['localhost:9092'],
            value_serializer=lambda x: json.dumps(x).encode('utf-8'),
            compression_type="gzip",
            batch_size=16384,
            linger_ms=5,  # Low latency
            acks='1'       # Fast acknowledgment
        )
        await self.kafka_producer.start()
        
        # Initialize Redis
        self.redis = redis.Redis(
            host='localhost',
            port=6379,
            decode_responses=True,
            max_connections=100
        )
        
        # Create Redis streams for different priorities
        priority_streams = {
            MessagePriority.REAL_TIME: "realtime_stream",
            MessagePriority.HIGH: "high_priority_stream", 
            MessagePriority.MEDIUM: "medium_priority_stream",
            MessagePriority.LOW: "low_priority_stream",
            MessagePriority.BACKGROUND: "background_stream"
        }
        
        for priority, stream_name in priority_streams.items():
            self.redis_streams[priority] = stream_name
            
    async def publish(self, message: Message) -> bool:
        """Publish message to appropriate queue based on priority"""
        try:
            if message.priority in [MessagePriority.REAL_TIME, MessagePriority.HIGH]:
                # Use Redis for low-latency messages
                stream_name = self.redis_streams[message.priority]
                await self.redis.xadd(
                    stream_name,
                    {
                        "id": message.id,
                        "topic": message.topic,
                        "payload": json.dumps(message.payload),
                        "created_at": message.created_at.isoformat()
                    }
                )
            else:
                # Use Kafka for high-throughput messages
                await self.kafka_producer.send(
                    message.topic,
                    {
                        "id": message.id,
                        "payload": message.payload,
                        "priority": message.priority.value,
                        "created_at": message.created_at.isoformat()
                    }
                )
                
            self.metrics["messages_sent"] += 1
            return True
            
        except Exception as e:
            logger.error(f"Failed to publish message {message.id}: {e}")
            return False
            
    async def subscribe(self, topic: str, handler: Callable, priority: MessagePriority = MessagePriority.MEDIUM):
        """Subscribe to topic with priority-based processing"""
        self.handlers[topic] = handler
        
        if priority in [MessagePriority.REAL_TIME, MessagePriority.HIGH]:
            # Process Redis streams
            await self._process_redis_stream(topic, priority)
        else:
            # Process Kafka topics
            await self._process_kafka_topic(topic)
            
    async def _process_redis_stream(self, topic: str, priority: MessagePriority):
        """Process high-priority messages from Redis streams"""
        stream_name = self.redis_streams[priority]
        
        while True:
            try:
                # Read from stream with very low timeout
                messages = await self.redis.xread(
                    {stream_name: '$'},
                    count=10,
                    block=50  # 50ms timeout for real-time processing
                )
                
                for stream, stream_messages in messages:
                    for msg_id, fields in stream_messages:
                        if fields.get('topic') == topic:
                            await self._process_message(fields, topic)
                            
                        # Acknowledge message
                        await self.redis.xdel(stream, msg_id)
                        
            except Exception as e:
                logger.error(f"Error processing Redis stream {topic}: {e}")
                await asyncio.sleep(0.1)
                
    async def _process_kafka_topic(self, topic: str):
        """Process medium/low priority messages from Kafka"""
        consumer = aiokafka.AIOKafkaConsumer(
            topic,
            bootstrap_servers=['localhost:9092'],
            group_id=f"Duovarsity_{topic}_consumer",
            auto_offset_reset='latest',
            value_deserializer=lambda x: json.loads(x.decode('utf-8'))
        )
        
        await consumer.start()
        
        try:
            async for message in consumer:
                await self._process_message(message.value, topic)
        finally:
            await consumer.stop()
            
    async def _process_message(self, message_data: Dict, topic: str):
        """Process individual message with error handling and metrics"""
        start_time = datetime.now()
        
        try:
            handler = self.handlers.get(topic)
            if handler:
                await handler(message_data)
                
            # Update metrics
            processing_time = (datetime.now() - start_time).total_seconds()
            if topic not in self.metrics["processing_times"]:
                self.metrics["processing_times"][topic] = []
            self.metrics["processing_times"][topic].append(processing_time)
            
            self.metrics["messages_processed"] += 1
            
        except Exception as e:
            logger.error(f"Error processing message in topic {topic}: {e}")
            if topic not in self.metrics["error_rates"]:
                self.metrics["error_rates"][topic] = 0
            self.metrics["error_rates"][topic] += 1

# Specialized Message Handlers
class SpecializedHandlers:
    def __init__(self, db_manager: OptimizedDatabaseManager):
        self.db_manager = db_manager
        
    async def handle_user_progress_update(self, message_data: Dict):
        """Handle real-time progress updates"""
        user_id = message_data["user_id"]
        lesson_id = message_data["lesson_id"]
        progress = message_data["progress"]
        
        # Ultra-fast update using optimized connection
        async with self.db_manager.get_connection("real_time") as conn:
            await conn.execute(
                """
                UPDATE user_progress 
                SET progress = $1, updated_at = NOW()
                WHERE user_id = $2 AND lesson_id = $3
                """,
                progress, user_id, lesson_id
            )
            
        # Broadcast to WebSocket connections
        await self._broadcast_progress_update(user_id, lesson_id, progress)
        
    async def handle_ai_content_generation(self, message_data: Dict):
        """Handle AI content generation requests"""
        request_id = message_data["request_id"]
        content_type = message_data["content_type"]
        
        # Use AI processing pool for long-running operations
        async with self.db_manager.get_connection("ai_processing") as conn:
            # Generate content using CrewAI
            result = await self._generate_ai_content(message_data)
            
            # Store result
            await conn.execute(
                """
                UPDATE ai_generation_requests 
                SET result = $1, status = 'completed', completed_at = NOW()
                WHERE request_id = $2
                """,
                json.dumps(result), request_id
            )
            
    async def handle_bulk_analytics_update(self, message_data: Dict):
        """Handle batch analytics processing"""
        analytics_batch = message_data["analytics_batch"]
        
        # Use write-heavy pool for bulk operations
        async with self.db_manager.get_connection("write_heavy") as conn:
            # Batch insert analytics data
            values = []
            for item in analytics_batch:
                values.append((
                    item["user_id"],
                    item["action"],
                    item["timestamp"],
                    json.dumps(item["metadata"])
                ))
                
            await conn.executemany(
                """
                INSERT INTO user_analytics (user_id, action, timestamp, metadata)
                VALUES ($1, $2, $3, $4)
                """,
                values
            )

3. Apache Kafka + Apache Pulsar Integration

# Apache Services Integration
# File: newshiksha-backend/app/services/apache_services.py

import asyncio
import json
from typing import Dict, Any, List
import pulsar
from confluent_kafka import Producer, Consumer
import apache_beam as beam
from apache_beam.options.pipeline_options import PipelineOptions

class ApacheServicesManager:
    def __init__(self):
        # Apache Kafka for event streaming
        self.kafka_producer = None
        self.kafka_consumer = None
        
        # Apache Pulsar for geo-distributed messaging
        self.pulsar_client = None
        self.pulsar_producer = None
        
        # Apache Beam for stream processing
        self.beam_pipeline = None
        
    async def initialize_kafka(self):
        """Initialize Apache Kafka for high-throughput streaming"""
        
        kafka_config = {
            'bootstrap.servers': 'localhost:9092',
            'client.id': 'Duovarsity-api',
            'compression.type': 'lz4',
            'batch.size': 32768,
            'linger.ms': 5,
            'acks': '1',
            'retries': 3,
            'retry.backoff.ms': 100,
            'request.timeout.ms': 30000,
            'delivery.timeout.ms': 300000,
        }
        
        # Producer for sending messages
        self.kafka_producer = Producer(kafka_config)
        
        # Consumer configuration
        consumer_config = {
            **kafka_config,
            'group.id': 'Duovarsity-consumer-group',
            'auto.offset.reset': 'latest',
            'enable.auto.commit': True,
            'auto.commit.interval.ms': 1000,
            'session.timeout.ms': 30000,
            'max.poll.interval.ms': 300000,
        }
        
        self.kafka_consumer = Consumer(consumer_config)
        
    async def initialize_pulsar(self):
        """Initialize Apache Pulsar for geo-distributed messaging"""
        
        # Pulsar client with multiple brokers
        self.pulsar_client = pulsar.Client(
            service_url='pulsar://localhost:6650',
            connection_timeout_ms=30000,
            operation_timeout_ms=30000,
            io_threads=4,
            message_listener_threads=4,
            concurrent_lookup_requests=50000,
            max_connections_per_broker=1,
            use_tls=False,
            logger=pulsar.ConsoleLogger(pulsar.LoggerLevel.Info)
        )
        
        # Producer with batching for performance
        self.pulsar_producer = self.pulsar_client.create_producer(
            topic='Duovarsity-events',
            compression_type=pulsar.CompressionType.LZ4,
            batching_enabled=True,
            batching_max_messages=1000,
            batching_max_publish_delay_ms=10,
            max_pending_messages=30000,
            block_if_queue_full=True,
            send_timeout_ms=30000
        )
        
    async def setup_beam_pipeline(self):
        """Setup Apache Beam for real-time data processing"""
        
        # Pipeline options
        pipeline_options = PipelineOptions([
            '--runner=DirectRunner',  # Use DataflowRunner for production
            '--project=Duovarsity',
            '--region=us-central1',
            '--temp_location=gs://Duovarsity-temp',
            '--staging_location=gs://Duovarsity-staging'
        ])
        
        # Create pipeline
        with beam.Pipeline(options=pipeline_options) as pipeline:
            
            # Real-time user activity processing
            user_activities = (
                pipeline
                | 'Read from Kafka' >> beam.io.ReadFromKafka(
                    consumer_config={
                        'bootstrap.servers': 'localhost:9092',
                        'auto.offset.reset': 'latest'
                    },
                    topics=['user-activities']
                )
                | 'Parse JSON' >> beam.Map(lambda x: json.loads(x[1]))
                | 'Extract User ID' >> beam.Map(lambda x: (x['user_id'], x))
                | 'Window Activities' >> beam.WindowInto(
                    beam.window.FixedWindows(60)  # 1-minute windows
                )
                | 'Count Activities' >> beam.CombinePerKey(
                    beam.combiners.CountCombineFn()
                )
                | 'Format Output' >> beam.Map(self._format_activity_count)
                | 'Write to Database' >> beam.ParDo(
                    WriteToDatabaseFn()
                )
            )
            
            # Real-time AI processing metrics
            ai_metrics = (
                pipeline
                | 'Read AI Events' >> beam.io.ReadFromKafka(
                    consumer_config={
                        'bootstrap.servers': 'localhost:9092'
                    },
                    topics=['ai-processing']
                )
                | 'Parse AI Events' >> beam.Map(lambda x: json.loads(x[1]))
                | 'Calculate Latency' >> beam.Map(self._calculate_ai_latency)
                | 'Window Metrics' >> beam.WindowInto(
                    beam.window.SlidingWindows(size=300, period=60)  # 5-min windows, 1-min slide
                )
                | 'Aggregate Metrics' >> beam.CombineGlobally(
                    beam.combiners.MeanCombineFn()
                ).without_defaults()
                | 'Store Metrics' >> beam.ParDo(
                    StoreMetricsFn()
                )
            )
            
    def _format_activity_count(self, kv_pair):
        """Format activity count for storage"""
        user_id, count = kv_pair
        return {
            'user_id': user_id,
            'activity_count': count,
            'timestamp': datetime.now().isoformat(),
            'window_duration': 60
        }
        
    def _calculate_ai_latency(self, event):
        """Calculate AI processing latency"""
        start_time = datetime.fromisoformat(event['start_time'])
        end_time = datetime.fromisoformat(event['end_time'])
        latency_ms = (end_time - start_time).total_seconds() * 1000
        
        return {
            'request_id': event['request_id'],
            'latency_ms': latency_ms,
            'model_used': event['model_used'],
            'timestamp': event['end_time']
        }

# Custom Beam DoFn classes
class WriteToDatabaseFn(beam.DoFn):
    def setup(self):
        # Initialize database connection
        self.db_manager = OptimizedDatabaseManager()
        
    async def process(self, element):
        """Write processed data to database"""
        async with self.db_manager.get_connection("write_heavy") as conn:
            await conn.execute(
                """
                INSERT INTO user_activity_metrics 
                (user_id, activity_count, timestamp, window_duration)
                VALUES ($1, $2, $3, $4)
                ON CONFLICT (user_id, timestamp) 
                DO UPDATE SET activity_count = $2
                """,
                element['user_id'],
                element['activity_count'],
                element['timestamp'],
                element['window_duration']
            )

class StoreMetricsFn(beam.DoFn):
    def setup(self):
        self.redis = redis.Redis(host='localhost', port=6379)
        
    def process(self, element):
        """Store real-time metrics in Redis"""
        metric_key = f"ai_latency:{datetime.now().strftime('%Y%m%d_%H%M')}"
        self.redis.setex(metric_key, 3600, json.dumps(element))  # 1 hour TTL

4. Real-Time WebSocket Implementation

# Advanced WebSocket Management
# File: newshiksha-backend/app/services/websocket_service.py

import asyncio
import json
import logging
from typing import Dict, List, Set, Optional
from datetime import datetime, timedelta
from fastapi import WebSocket, WebSocketDisconnect
from collections import defaultdict
import redis.asyncio as redis
from dataclasses import dataclass, asdict

@dataclass
class ConnectionMetadata:
    user_id: str
    session_id: str
    connected_at: datetime
    last_activity: datetime
    subscription_topics: Set[str]
    client_info: Dict[str, str]

class AdvancedWebSocketManager:
    def __init__(self, redis_client: redis.Redis):
        # Active connections by user
        self.connections: Dict[str, List[WebSocket]] = defaultdict(list)
        
        # Connection metadata
        self.connection_metadata: Dict[WebSocket, ConnectionMetadata] = {}
        
        # Topic subscriptions
        self.topic_subscriptions: Dict[str, Set[WebSocket]] = defaultdict(set)
        
        # Redis for cross-instance messaging
        self.redis = redis_client
        
        # Performance metrics
        self.metrics = {
            "total_connections": 0,
            "messages_sent": 0,
            "messages_received": 0,
            "average_latency": 0.0,
            "connection_errors": 0
        }
        
        # Background tasks
        self.cleanup_task = None
        self.heartbeat_task = None
        
    async def connect(
        self, 
        websocket: WebSocket, 
        user_id: str, 
        client_info: Dict[str, str] = None
    ) -> str:
        """Accept WebSocket connection with metadata tracking"""
        
        await websocket.accept()
        
        # Generate session ID
        session_id = f"{user_id}_{int(datetime.now().timestamp())}_{len(self.connections[user_id])}"
        
        # Store connection
        self.connections[user_id].append(websocket)
        
        # Store metadata
        self.connection_metadata[websocket] = ConnectionMetadata(
            user_id=user_id,
            session_id=session_id,
            connected_at=datetime.now(),
            last_activity=datetime.now(),
            subscription_topics=set(),
            client_info=client_info or {}
        )
        
        # Update metrics
        self.metrics["total_connections"] += 1
        
        # Send welcome message
        await self.send_to_connection(websocket, {
            "type": "connection_established",
            "session_id": session_id,
            "server_time": datetime.now().isoformat(),
            "supported_features": [
                "real_time_progress",
                "live_notifications", 
                "collaborative_features",
                "typing_indicators",
                "presence_updates"
            ]
        })
        
        # Start background tasks if not running
        if not self.cleanup_task:
            self.cleanup_task = asyncio.create_task(self._cleanup_inactive_connections())
        if not self.heartbeat_task:
            self.heartbeat_task = asyncio.create_task(self._heartbeat_monitor())
            
        logger.info(f"WebSocket connected: user={user_id}, session={session_id}")
        return session_id
        
    async def disconnect(self, websocket: WebSocket):
        """Handle WebSocket disconnection with cleanup"""
        
        if websocket not in self.connection_metadata:
            return
            
        metadata = self.connection_metadata[websocket]
        user_id = metadata.user_id
        
        # Remove from connections
        if user_id in self.connections:
            self.connections[user_id] = [
                conn for conn in self.connections[user_id] 
                if conn != websocket
            ]
            
            # Clean up empty user lists
            if not self.connections[user_id]:
                del self.connections[user_id]
                
        # Remove from topic subscriptions
        for topic in metadata.subscription_topics:
            self.topic_subscriptions[topic].discard(websocket)
            
        # Remove metadata
        del self.connection_metadata[websocket]
        
        # Update metrics
        self.metrics["total_connections"] -= 1
        
        logger.info(f"WebSocket disconnected: user={user_id}, session={metadata.session_id}")
        
    async def subscribe_to_topic(self, websocket: WebSocket, topic: str):
        """Subscribe connection to a topic"""
        
        if websocket not in self.connection_metadata:
            return False
            
        metadata = self.connection_metadata[websocket]
        metadata.subscription_topics.add(topic)
        self.topic_subscriptions[topic].add(websocket)
        
        # Acknowledge subscription
        await self.send_to_connection(websocket, {
            "type": "subscription_confirmed",
            "topic": topic,
            "timestamp": datetime.now().isoformat()
        })
        
        return True
        
    async def broadcast_to_topic(self, topic: str, message: Dict, exclude_user: str = None):
        """Broadcast message to all subscribers of a topic"""
        
        if topic not in self.topic_subscriptions:
            return 0
            
        connections = list(self.topic_subscriptions[topic])
        successful_sends = 0
        
        # Create broadcast message
        broadcast_message = {
            "type": "topic_broadcast",
            "topic": topic,
            "data": message,
            "timestamp": datetime.now().isoformat()
        }
        
        # Send to all subscribers
        send_tasks = []
        for connection in connections:
            metadata = self.connection_metadata.get(connection)
            if metadata and (not exclude_user or metadata.user_id != exclude_user):
                send_tasks.append(self.send_to_connection(connection, broadcast_message))
                
        # Execute sends concurrently
        results = await asyncio.gather(*send_tasks, return_exceptions=True)
        
        # Count successful sends
        for result in results:
            if not isinstance(result, Exception):
                successful_sends += 1
                
        return successful_sends
        
    async def send_to_user(self, user_id: str, message: Dict):
        """Send message to all connections of a specific user"""
        
        if user_id not in self.connections:
            return 0
            
        connections = list(self.connections[user_id])
        successful_sends = 0
        
        # Create user message
        user_message = {
            "type": "user_message",
            "data": message,
            "timestamp": datetime.now().isoformat()
        }
        
        # Send to all user connections
        send_tasks = [
            self.send_to_connection(conn, user_message) 
            for conn in connections
        ]
        
        results = await asyncio.gather(*send_tasks, return_exceptions=True)
        
        # Count successful sends
        for result in results:
            if not isinstance(result, Exception):
                successful_sends += 1
                
        return successful_sends
        
    async def send_to_connection(self, websocket: WebSocket, message: Dict):
        """Send message to specific WebSocket connection with error handling"""
        
        try:
            # Update last activity
            if websocket in self.connection_metadata:
                self.connection_metadata[websocket].last_activity = datetime.now()
                
            # Send message
            await websocket.send_json(message)
            self.metrics["messages_sent"] += 1
            
        except WebSocketDisconnect:
            # Handle graceful disconnection
            await self.disconnect(websocket)
            
        except Exception as e:
            # Handle other errors
            logger.error(f"Error sending WebSocket message: {e}")
            self.metrics["connection_errors"] += 1
            await self.disconnect(websocket)
            
    async def _cleanup_inactive_connections(self):
        """Background task to cleanup inactive connections"""
        
        while True:
            try:
                current_time = datetime.now()
                inactive_threshold = timedelta(minutes=30)  # 30 minutes
                
                inactive_connections = []
                
                for websocket, metadata in self.connection_metadata.items():
                    if current_time - metadata.last_activity > inactive_threshold:
                        inactive_connections.append(websocket)
                        
                # Disconnect inactive connections
                for websocket in inactive_connections:
                    await self.disconnect(websocket)
                    
                if inactive_connections:
                    logger.info(f"Cleaned up {len(inactive_connections)} inactive connections")
                    
            except Exception as e:
                logger.error(f"Error in connection cleanup: {e}")
                
            # Sleep for 5 minutes
            await asyncio.sleep(300)
            
    async def _heartbeat_monitor(self):
        """Send periodic heartbeat to all connections"""
        
        while True:
            try:
                heartbeat_message = {
                    "type": "heartbeat",
                    "timestamp": datetime.now().isoformat(),
                    "server_status": "healthy"
                }
                
                # Send heartbeat to all connections
                all_connections = []
                for user_connections in self.connections.values():
                    all_connections.extend(user_connections)
                    
                if all_connections:
                    send_tasks = [
                        self.send_to_connection(conn, heartbeat_message)
                        for conn in all_connections
                    ]
                    
                    await asyncio.gather(*send_tasks, return_exceptions=True)
                    
            except Exception as e:
                logger.error(f"Error in heartbeat monitor: {e}")
                
            # Send heartbeat every 30 seconds
            await asyncio.sleep(30)
            
    async def get_user_presence(self, user_id: str) -> Dict:
        """Get user presence information"""
        
        if user_id not in self.connections:
            return {"online": False, "last_seen": None}
            
        user_connections = self.connections[user_id]
        if not user_connections:
            return {"online": False, "last_seen": None}
            
        # Get latest activity from all connections
        latest_activity = None
        for conn in user_connections:
            metadata = self.connection_metadata.get(conn)
            if metadata:
                if not latest_activity or metadata.last_activity > latest_activity:
                    latest_activity = metadata.last_activity
                    
        return {
            "online": True,
            "last_seen": latest_activity.isoformat() if latest_activity else None,
            "active_sessions": len(user_connections),
            "connection_count": len(user_connections)
        }
        
    async def get_system_metrics(self) -> Dict:
        """Get WebSocket system metrics"""
        
        return {
            **self.metrics,
            "active_users": len(self.connections),
            "total_active_connections": sum(len(conns) for conns in self.connections.values()),
            "topic_subscriptions": {
                topic: len(connections) 
                for topic, connections in self.topic_subscriptions.items()
            },
            "timestamp": datetime.now().isoformat()
        }

🔄 Phase 2: Dynamic Architecture Patterns

1. Plugin Architecture for Dynamic Features

# Dynamic Plugin System
# File: newshiksha-backend/app/core/plugin_system.py

import importlib
import inspect
import asyncio
from typing import Dict, Any, List, Callable, Optional, Type
from abc import ABC, abstractmethod
from dataclasses import dataclass
from enum import Enum
import json
import os
from pathlib import Path

class PluginType(Enum):
    AI_MODEL = "ai_model"
    CONTENT_PROCESSOR = "content_processor"
    ANALYTICS_HANDLER = "analytics_handler"
    NOTIFICATION_PROVIDER = "notification_provider"
    AUTHENTICATION_PROVIDER = "auth_provider"
    PAYMENT_GATEWAY = "payment_gateway"

@dataclass
class PluginMetadata:
    name: str
    version: str
    description: str
    author: str
    plugin_type: PluginType
    dependencies: List[str]
    configuration_schema: Dict[str, Any]
    api_version: str

class BasePlugin(ABC):
    """Base class for all plugins"""
    
    def __init__(self, config: Dict[str, Any] = None):
        self.config = config or {}
        self.is_initialized = False
        
    @abstractmethod
    async def initialize(self) -> bool:
        """Initialize the plugin"""
        pass
        
    @abstractmethod
    async def cleanup(self) -> bool:
        """Cleanup plugin resources"""
        pass
        
    @abstractmethod
    def get_metadata(self) -> PluginMetadata:
        """Get plugin metadata"""
        pass
        
    @abstractmethod
    async def health_check(self) -> Dict[str, Any]:
        """Check plugin health"""
        pass

class DynamicPluginManager:
    """Manages dynamic loading and execution of plugins"""
    
    def __init__(self):
        self.plugins: Dict[str, BasePlugin] = {}
        self.plugin_metadata: Dict[str, PluginMetadata] = {}
        self.plugin_hooks: Dict[str, List[Callable]] = {}
        self.plugin_directory = Path("plugins")
        
        # Plugin lifecycle events
        self.event_handlers = {
            "plugin_loaded": [],
            "plugin_unloaded": [],
            "plugin_error": [],
            "plugin_updated": []
        }
        
    async def discover_plugins(self) -> List[str]:
        """Discover available plugins in plugin directory"""
        
        if not self.plugin_directory.exists():
            self.plugin_directory.mkdir(parents=True)
            return []
            
        discovered_plugins = []
        
        for plugin_dir in self.plugin_directory.iterdir():
            if plugin_dir.is_dir():
                plugin_file = plugin_dir / "plugin.py"
                metadata_file = plugin_dir / "metadata.json"
                
                if plugin_file.exists() and metadata_file.exists():
                    discovered_plugins.append(plugin_dir.name)
                    
        return discovered_plugins
        
    async def load_plugin(self, plugin_name: str, config: Dict[str, Any] = None) -> bool:
        """Dynamically load a plugin"""
        
        try:
            # Load metadata
            metadata_path = self.plugin_directory / plugin_name / "metadata.json"
            with open(metadata_path) as f:
                metadata_dict = json.load(f)
                
            metadata = PluginMetadata(**metadata_dict)
            
            # Check dependencies
            if not await self._check_dependencies(metadata.dependencies):
                raise Exception(f"Missing dependencies for plugin {plugin_name}")
                
            # Import plugin module
            plugin_module_path = f"plugins.{plugin_name}.plugin"
            plugin_module = importlib.import_module(plugin_module_path)
            
            # Find plugin class
            plugin_class = None
            for name, obj in inspect.getmembers(plugin_module):
                if (inspect.isclass(obj) and 
                    issubclass(obj, BasePlugin) and 
                    obj != BasePlugin):
                    plugin_class = obj
                    break
                    
            if not plugin_class:
                raise Exception(f"No valid plugin class found in {plugin_name}")
                
            # Create plugin instance
            plugin_instance = plugin_class(config)
            
            # Initialize plugin
            if await plugin_instance.initialize():
                self.plugins[plugin_name] = plugin_instance
                self.plugin_metadata[plugin_name] = metadata
                
                # Register plugin hooks
                await self._register_plugin_hooks(plugin_name, plugin_instance)
                
                # Emit event
                await self._emit_event("plugin_loaded", {
                    "plugin_name": plugin_name,
                    "metadata": metadata
                })
                
                logger.info(f"Successfully loaded plugin: {plugin_name}")
                return True
            else:
                raise Exception(f"Failed to initialize plugin {plugin_name}")
                
        except Exception as e:
            logger.error(f"Error loading plugin {plugin_name}: {e}")
            await self._emit_event("plugin_error", {
                "plugin_name": plugin_name,
                "error": str(e)
            })
            return False
            
    async def unload_plugin(self, plugin_name: str) -> bool:
        """Unload a plugin"""
        
        if plugin_name not in self.plugins:
            return False
            
        try:
            plugin = self.plugins[plugin_name]
            
            # Cleanup plugin
            await plugin.cleanup()
            
            # Unregister hooks
            await self._unregister_plugin_hooks(plugin_name)
            
            # Remove from registry
            del self.plugins[plugin_name]
            del self.plugin_metadata[plugin_name]
            
            # Emit event
            await self._emit_event("plugin_unloaded", {
                "plugin_name": plugin_name
            })
            
            logger.info(f"Successfully unloaded plugin: {plugin_name}")
            return True
            
        except Exception as e:
            logger.error(f"Error unloading plugin {plugin_name}: {e}")
            return False
            
    async def reload_plugin(self, plugin_name: str, config: Dict[str, Any] = None) -> bool:
        """Reload a plugin with new configuration"""
        
        if plugin_name in self.plugins:
            await self.unload_plugin(plugin_name)
            
        # Clear module cache to force reload
        plugin_module_path = f"plugins.{plugin_name}.plugin"
        if plugin_module_path in sys.modules:
            del sys.modules[plugin_module_path]
            
        return await self.load_plugin(plugin_name, config)
        
    async def execute_hook(self, hook_name: str, *args, **kwargs) -> List[Any]:
        """Execute all registered hooks for an event"""
        
        if hook_name not in self.plugin_hooks:
            return []
            
        results = []
        hooks = self.plugin_hooks[hook_name]
        
        # Execute hooks concurrently
        tasks = []
        for hook in hooks:
            if asyncio.iscoroutinefunction(hook):
                tasks.append(hook(*args, **kwargs))
            else:
                # Wrap sync function in async
                tasks.append(asyncio.create_task(
                    asyncio.to_thread(hook, *args, **kwargs)
                ))
                
        if tasks:
            results = await asyncio.gather(*tasks, return_exceptions=True)
            
        return results
        
    async def get_plugin_status(self, plugin_name: str) -> Dict[str, Any]:
        """Get plugin status and health"""
        
        if plugin_name not in self.plugins:
            return {"status": "not_loaded"}
            
        plugin = self.plugins[plugin_name]
        metadata = self.plugin_metadata[plugin_name]
        
        try:
            health = await plugin.health_check()
            return {
                "status": "healthy" if health.get("healthy", False) else "unhealthy",
                "metadata": metadata,
                "health": health,
                "is_initialized": plugin.is_initialized
            }
        except Exception as e:
            return {
                "status": "error",
                "metadata": metadata,
                "error": str(e),
                "is_initialized": plugin.is_initialized
            }
            
    async def _check_dependencies(self, dependencies: List[str]) -> bool:
        """Check if plugin dependencies are satisfied"""
        
        for dependency in dependencies:
            try:
                importlib.import_module(dependency)
            except ImportError:
                logger.warning(f"Missing dependency: {dependency}")
                return False
                
        return True
        
    async def _register_plugin_hooks(self, plugin_name: str, plugin: BasePlugin):
        """Register plugin hooks for events"""
        
        # Use reflection to find hook methods
        for method_name in dir(plugin):
            if method_name.startswith("on_"):
                hook_name = method_name[3:]  # Remove "on_" prefix
                hook_method = getattr(plugin, method_name)
                
                if callable(hook_method):
                    if hook_name not in self.plugin_hooks:
                        self.plugin_hooks[hook_name] = []
                    self.plugin_hooks[hook_name].append(hook_method)
                    
    async def _unregister_plugin_hooks(self, plugin_name: str):
        """Unregister plugin hooks"""
        
        plugin = self.plugins[plugin_name]
        
        for hook_name, hooks in self.plugin_hooks.items():
            # Remove hooks belonging to this plugin
            self.plugin_hooks[hook_name] = [
                hook for hook in hooks 
                if not (hasattr(hook, '__self__') and hook.__self__ == plugin)
            ]
            
    async def _emit_event(self, event_name: str, event_data: Dict[str, Any]):
        """Emit plugin lifecycle event"""
        
        if event_name in self.event_handlers:
            for handler in self.event_handlers[event_name]:
                try:
                    if asyncio.iscoroutinefunction(handler):
                        await handler(event_data)
                    else:
                        handler(event_data)
                except Exception as e:
                    logger.error(f"Error in event handler for {event_name}: {e}")

# Example AI Model Plugin
class OpenAIPlugin(BasePlugin):
    """Plugin for OpenAI integration"""
    
    def __init__(self, config: Dict[str, Any] = None):
        super().__init__(config)
        self.client = None
        
    async def initialize(self) -> bool:
        try:
            api_key = self.config.get("api_key")
            if not api_key:
                raise ValueError("OpenAI API key not provided")
                
            from openai import AsyncOpenAI
            self.client = AsyncOpenAI(api_key=api_key)
            
            # Test connection
            await self.client.models.list()
            
            self.is_initialized = True
            return True
            
        except Exception as e:
            logger.error(f"Failed to initialize OpenAI plugin: {e}")
            return False
            
    async def cleanup(self) -> bool:
        if self.client:
            await self.client.close()
        return True
        
    def get_metadata(self) -> PluginMetadata:
        return PluginMetadata(
            name="openai_plugin",
            version="1.0.0",
            description="OpenAI API integration plugin",
            author="Duovarsity Team",
            plugin_type=PluginType.AI_MODEL,
            dependencies=["openai"],
            configuration_schema={
                "api_key": {"type": "string", "required": True},
                "model": {"type": "string", "default": "gpt-4"},
                "max_tokens": {"type": "integer", "default": 1000}
            },
            api_version="1.0"
        )
        
    async def health_check(self) -> Dict[str, Any]:
        try:
            if not self.client:
                return {"healthy": False, "error": "Client not initialized"}
                
            # Test API connection
            models = await self.client.models.list()
            return {
                "healthy": True,
                "models_available": len(models.data),
                "last_check": datetime.now().isoformat()
            }
            
        except Exception as e:
            return {
                "healthy": False,
                "error": str(e),
                "last_check": datetime.now().isoformat()
            }
            
    async def on_ai_request(self, request_data: Dict[str, Any]) -> Dict[str, Any]:
        """Hook for AI requests"""
        try:
            response = await self.client.chat.completions.create(
                model=self.config.get("model", "gpt-4"),
                messages=request_data["messages"],
                max_tokens=self.config.get("max_tokens", 1000)
            )
            
            return {
                "success": True,
                "response": response.choices[0].message.content,
                "tokens_used": response.usage.total_tokens,
                "model": response.model
            }
            
        except Exception as e:
            return {
                "success": False,
                "error": str(e)
            }

2. Hot-Swappable Configuration System

# Dynamic Configuration Management
# File: newshiksha-backend/app/core/dynamic_config.py

import asyncio
import json
import yaml
from typing import Dict, Any, List, Callable, Optional
from datetime import datetime, timedelta
from pathlib import Path
import aiofiles
import hashlib
from dataclasses import dataclass, field
from enum import Enum

class ConfigSource(Enum):
    FILE = "file"
    DATABASE = "database"
    REDIS = "redis"
    ENVIRONMENT = "environment"
    REMOTE_API = "remote_api"

@dataclass
class ConfigChange:
    key: str
    old_value: Any
    new_value: Any
    source: ConfigSource
    timestamp: datetime
    applied_by: str

class DynamicConfigManager:
    """Manages hot-swappable configuration with real-time updates"""
    
    def __init__(self):
        self.config: Dict[str, Any] = {}
        self.config_sources: Dict[str, ConfigSource] = {}
        self.change_handlers: Dict[str, List[Callable]] = {}
        self.config_history: List[ConfigChange] = []
        self.file_watchers: Dict[str, asyncio.Task] = {}
        self.validation_rules: Dict[str, Callable] = {}
        
        # Default configuration
        self.default_config = {
            "database": {
                "pool_size": 50,
                "max_overflow": 100,
                "pool_timeout": 30,
                "pool_recycle": 3600
            },
            "api": {
                "rate_limit": 1000,
                "timeout": 30,
                "max_request_size": 10485760,  # 10MB
                "compression": True
            },
            "ai": {
                "default_model": "gpt-3.5-turbo",
                "max_tokens": 1000,
                "temperature": 0.7,
                "request_timeout": 60,
                "batch_size": 10
            },
            "cache": {
                "default_ttl": 3600,
                "max_size": 10000,
                "cleanup_interval": 300
            },
            "websocket": {
                "heartbeat_interval": 30,
                "max_connections_per_user": 5,
                "inactive_timeout": 1800
            },
            "features": {
                "real_time_progress": True,
                "advanced_analytics": True,
                "ai_content_generation": True,
                "collaborative_features": False
            }
        }
        
        # Load default configuration
        self.config = self.default_config.copy()
        
    async def initialize(self):
        """Initialize configuration manager"""
        
        # Load configuration from multiple sources
        await self._load_from_file("config/production.yaml", ConfigSource.FILE)
        await self._load_from_environment()
        await self._load_from_database()
        
        # Start file watchers
        await self._start_file_watchers()
        
        # Start periodic refresh from remote sources
        asyncio.create_task(self._periodic_refresh())
        
    async def get(self, key: str, default: Any = None) -> Any:
        """Get configuration value with dot notation support"""
        
        keys = key.split('.')
        current = self.config
        
        for k in keys:
            if isinstance(current, dict) and k in current:
                current = current[k]
            else:
                return default
                
        return current
        
    async def set(
        self, 
        key: str, 
        value: Any, 
        source: ConfigSource = ConfigSource.RUNTIME,
        applied_by: str = "system",
        validate: bool = True
    ) -> bool:
        """Set configuration value with validation and change tracking"""
        
        # Validate new value
        if validate and not await self._validate_config_change(key, value):
            return False
            
        # Get old value
        old_value = await self.get(key)
        
        # Set new value
        keys = key.split('.')
        current = self.config
        
        for k in keys[:-1]:
            if k not in current:
                current[k] = {}
            current = current[k]
            
        current[keys[-1]] = value
        
        # Track change
        change = ConfigChange(
            key=key,
            old_value=old_value,
            new_value=value,
            source=source,
            timestamp=datetime.now(),
            applied_by=applied_by
        )
        
        self.config_history.append(change)
        self.config_sources[key] = source
        
        # Notify change handlers
        await self._notify_change_handlers(key, old_value, value)
        
        # Persist change if needed
        if source in [ConfigSource.FILE, ConfigSource.DATABASE]:
            await self._persist_change(key, value, source)
            
        logger.info(f"Configuration changed: {key} = {value} (source: {source.value})")
        return True
        
    async def register_change_handler(self, key: str, handler: Callable):
        """Register handler for configuration changes"""
        
        if key not in self.change_handlers:
            self.change_handlers[key] = []
            
        self.change_handlers[key].append(handler)
        
    async def register_validation_rule(self, key: str, validator: Callable):
        """Register validation rule for configuration key"""
        
        self.validation_rules[key] = validator
        
    async def get_changes_since(self, timestamp: datetime) -> List[ConfigChange]:
        """Get configuration changes since timestamp"""
        
        return [
            change for change in self.config_history
            if change.timestamp > timestamp
        ]
        
    async def rollback_change(self, change_id: int) -> bool:
        """Rollback a specific configuration change"""
        
        if change_id >= len(self.config_history):
            return False
            
        change = self.config_history[change_id]
        return await self.set(
            change.key, 
            change.old_value,
            ConfigSource.RUNTIME,
            "rollback_system"
        )
        
    async def hot_reload_from_file(self, file_path: str) -> bool:
        """Hot reload configuration from file"""
        
        try:
            path = Path(file_path)
            if not path.exists():
                return False
                
            async with aiofiles.open(path, 'r') as f:
                content = await f.read()
                
            if path.suffix == '.yaml' or path.suffix == '.yml':
                new_config = yaml.safe_load(content)
            elif path.suffix == '.json':
                new_config = json.loads(content)
            else:
                return False
                
            # Apply changes
            await self._apply_config_dict(new_config, ConfigSource.FILE)
            
            logger.info(f"Hot reloaded configuration from {file_path}")
            return True
            
        except Exception as e:
            logger.error(f"Error hot reloading config from {file_path}: {e}")
            return False
            
    async def _load_from_file(self, file_path: str, source: ConfigSource):
        """Load configuration from file"""
        
        try:
            path = Path(file_path)
            if not path.exists():
                return
                
            async with aiofiles.open(path, 'r') as f:
                content = await f.read()
                
            if path.suffix in ['.yaml', '.yml']:
                file_config = yaml.safe_load(content)
            elif path.suffix == '.json':
                file_config = json.loads(content)
            else:
                return
                
            await self._apply_config_dict(file_config, source)
            
        except Exception as e:
            logger.error(f"Error loading config from {file_path}: {e}")
            
    async def _load_from_environment(self):
        """Load configuration from environment variables"""
        
        import os
        
        env_config = {}
        
        # Map environment variables to config keys
        env_mappings = {
            "DATABASE_POOL_SIZE": "database.pool_size",
            "API_RATE_LIMIT": "api.rate_limit",
            "AI_DEFAULT_MODEL": "ai.default_model",
            "CACHE_DEFAULT_TTL": "cache.default_ttl",
            "WEBSOCKET_HEARTBEAT_INTERVAL": "websocket.heartbeat_interval"
        }
        
        for env_var, config_key in env_mappings.items():
            value = os.getenv(env_var)
            if value:
                # Try to convert to appropriate type
                try:
                    if value.isdigit():
                        value = int(value)
                    elif value.lower() in ['true', 'false']:
                        value = value.lower() == 'true'
                    elif '.' in value and value.replace('.', '').isdigit():
                        value = float(value)
                except:
                    pass  # Keep as string
                    
                await self.set(config_key, value, ConfigSource.ENVIRONMENT)
                
    async def _load_from_database(self):
        """Load configuration from database"""
        
        try:
            # Implementation depends on your database setup
            # This is a placeholder for database configuration loading
            pass
            
        except Exception as e:
            logger.error(f"Error loading config from database: {e}")
            
    async def _apply_config_dict(self, config_dict: Dict[str, Any], source: ConfigSource):
        """Apply configuration dictionary with nested key handling"""
        
        def flatten_dict(d: Dict, parent_key: str = '') -> Dict[str, Any]:
            items = []
            for k, v in d.items():
                new_key = f"{parent_key}.{k}" if parent_key else k
                if isinstance(v, dict):
                    items.extend(flatten_dict(v, new_key).items())
                else:
                    items.append((new_key, v))
            return dict(items)
            
        flat_config = flatten_dict(config_dict)
        
        for key, value in flat_config.items():
            await self.set(key, value, source, "config_loader", validate=False)
            
    async def _start_file_watchers(self):
        """Start file watchers for configuration files"""
        
        config_files = [
            "config/production.yaml",
            "config/features.yaml",
            "config/ai_models.yaml"
        ]
        
        for file_path in config_files:
            if Path(file_path).exists():
                task = asyncio.create_task(self._watch_file(file_path))
                self.file_watchers[file_path] = task
                
    async def _watch_file(self, file_path: str):
        """Watch file for changes and hot reload"""
        
        path = Path(file_path)
        last_modified = path.stat().st_mtime if path.exists() else 0
        
        while True:
            try:
                await asyncio.sleep(1)  # Check every second
                
                if not path.exists():
                    continue
                    
                current_modified = path.stat().st_mtime
                
                if current_modified > last_modified:
                    # File changed, reload
                    await self.hot_reload_from_file(file_path)
                    last_modified = current_modified
                    
            except Exception as e:
                logger.error(f"Error watching file {file_path}: {e}")
                
    async def _periodic_refresh(self):
        """Periodically refresh configuration from remote sources"""
        
        while True:
            try:
                # Refresh every 5 minutes
                await asyncio.sleep(300)
                
                # Reload from database
                await self._load_from_database()
                
                # Check for remote configuration updates
                # Implementation depends on your remote config service
                
            except Exception as e:
                logger.error(f"Error in periodic config refresh: {e}")
                
    async def _validate_config_change(self, key: str, value: Any) -> bool:
        """Validate configuration change"""
        
        if key in self.validation_rules:
            validator = self.validation_rules[key]
            try:
                return await validator(value) if asyncio.iscoroutinefunction(validator) else validator(value)
            except Exception as e:
                logger.error(f"Validation error for {key}: {e}")
                return False
                
        # Default validation rules
        validation_rules = {
            "database.pool_size": lambda v: isinstance(v, int) and 1 <= v <= 1000,
            "api.rate_limit": lambda v: isinstance(v, int) and 1 <= v <= 100000,
            "ai.max_tokens": lambda v: isinstance(v, int) and 1 <= v <= 32000,
            "ai.temperature": lambda v: isinstance(v, (int, float)) and 0 <= v <= 2,
        }
        
        if key in validation_rules:
            return validation_rules[key](value)
            
        return True
        
    async def _notify_change_handlers(self, key: str, old_value: Any, new_value: Any):
        """Notify registered change handlers"""
        
        # Notify specific key handlers
        if key in self.change_handlers:
            for handler in self.change_handlers[key]:
                try:
                    if asyncio.iscoroutinefunction(handler):
                        await handler(key, old_value, new_value)
                    else:
                        handler(key, old_value, new_value)
                except Exception as e:
                    logger.error(f"Error in change handler for {key}: {e}")
                    
        # Notify wildcard handlers
        wildcard_key = "*"
        if wildcard_key in self.change_handlers:
            for handler in self.change_handlers[wildcard_key]:
                try:
                    if asyncio.iscoroutinefunction(handler):
                        await handler(key, old_value, new_value)
                    else:
                        handler(key, old_value, new_value)
                except Exception as e:
                    logger.error(f"Error in wildcard handler for {key}: {e}")
                    
    async def _persist_change(self, key: str, value: Any, source: ConfigSource):
        """Persist configuration change to storage"""
        
        if source == ConfigSource.FILE:
            # Update configuration file
            # Implementation depends on your file structure preference
            pass
        elif source == ConfigSource.DATABASE:
            # Update database record
            # Implementation depends on your database schema
            pass

# Usage Example
async def setup_dynamic_config():
    """Setup dynamic configuration with handlers"""
    
    config_manager = DynamicConfigManager()
    await config_manager.initialize()
    
    # Register change handlers
    async def database_pool_changed(key: str, old_value: Any, new_value: Any):
        """Handle database pool size changes"""
        logger.info(f"Database pool size changed from {old_value} to {new_value}")
        # Trigger database pool reconfiguration
        await reconfigure_database_pool(new_value)
        
    async def ai_model_changed(key: str, old_value: Any, new_value: Any):
        """Handle AI model changes"""
        logger.info(f"AI model changed from {old_value} to {new_value}")
        # Update AI service configuration
        await update_ai_service_model(new_value)
        
    await config_manager.register_change_handler("database.pool_size", database_pool_changed)
    await config_manager.register_change_handler("ai.default_model", ai_model_changed)
    
    # Register validation rules
    await config_manager.register_validation_rule(
        "database.pool_size",
        lambda v: isinstance(v, int) and 10 <= v <= 1000
    )
    
    return config_manager

This comprehensive latency optimization and dynamic architecture system provides:

🚀 Ultra-Low Latency Features:

  • Advanced connection pooling with workload-specific optimization
  • Multi-layer caching with Redis clusters
  • Real-time WebSocket management with presence detection
  • Apache Kafka + Pulsar for high-throughput messaging
  • Apache Beam for real-time stream processing

🔄 Dynamic Architecture:

  • Hot-swappable plugin system for adding new features
  • Real-time configuration management without restarts
  • Event-driven architecture with message queues
  • Intelligent request routing based on priority
  • Auto-scaling based on real-time metrics

📊 Performance Targets:

  • API Response Time: <50ms (95th percentile)
  • WebSocket Latency: <10ms for real-time updates
  • Database Query Time: <20ms with optimized pools
  • Cache Hit Rate: >95% with intelligent invalidation
  • Message Processing: <100ms for high-priority messages

This architecture ensures your Duovarsity system can dynamically adapt to changing requirements while maintaining ultra-low latency for 1 million concurrent users.

About

Duovarsity System Scaling Strategy

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published