Skip to content

anidec25/ML-Projects

Repository files navigation

Topics and Case Study

Linear Regression Topics

  • LR Introduction
  • LR Cost function
  • Gradient descent Code
  • Cross validation
  • Regularisation
  • Evaluation Metrics

Logistics Regression

  • Logistic Regression Introduction
  • Sigmoid Function
  • Logistic Regression Cost function
  • Gradient descent Code
  • Cross validation
  • Evaluation Metrics

Decision Tree

  • Introductory code for DT
  • Mathematical Intuition

Ensemble Techniques

  • Bagging: Random Forest
  • Boosting: GBDT, XGBoost, AdaBoost, CatBoost
  • Stacking
  • Cascading

Naive Bayes

  • Mathematical Intuition
  • Model Development
  • Advantages and Disadvantages

Clustering

  • K-Means
  • Hierarchial
  • GMM
  • DBSCAN

Recommender System

  • Apriori
  • Content Based recommender System
  • Collaborative filtering
  • Matrix Factorization
  • Evaluating RS

Time Series

  • Forcasting
  • Handling Missing Data and Anomalies
  • Time Series decomposition
  • Train Test Split and Measure of Forecast accuracy
  • Simple Forcast Method
  • Smoothing based methods
  • Stationary
  • ACF and PACF
  • ARIMA Family and Facebook's Prophet

About

All Classical Machine Learning Algorithms and respective Case Study for each algo type.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published