perception_eval is a tool to evaluate perception tasks.
Task | Metrics | Sub-metrics |
---|---|---|
Detection | mAP | AP, APH |
Tracking | CLEAR | MOTA, MOTP, IDswitch |
Prediction | WIP | WIP |
Sensing | Check Pointcloud | Detection Area & Non-detection Area |
Task | Metrics | Sub-metrics |
---|---|---|
Detection2D | mAP | AP |
Tracking2D | CLEAR | MOTA, MOTP, IDswitch |
Classification2D | Accuracy | Accuracy, Precision, Recall, F1score |
We support T4Dataset
format. This has same structure with NuScenes.
The expected dataset directory tree is shown as below.
data_root/
│── annotation/ ... annotation information in json format.
│ │── sample.json
│ │── sample_data.json
│ │── sample_annotation.json
│ └── ...
└── data/ ... raw data.
│── LIDAR_CONCAT/ # LIDAR_TOP is also OK.
└── CAM_**/
perception_eval
is mainly used in tier4/driving_log_replayer that is a tool to evaluate output of autoware.
If you want to evaluate your perception results through ROS, use driving_log_replayer
or refer test/perception_lsim.py.
This is a simple example to evaluate your 3D detection ML model. Basically, most parts of the codes are same with test/perception_lsim.py, so please refer it.
from perception_eval.config import PerceptionEvaluationConfig
from perception_eval.manager import PerceptionEvaluationManager
from perception_eval.common.object import DynamicObject
from perception_eval.evaluation.result.perception_frame_config import CriticalObjectFilterConfig
from perception_eval.evaluation.result.perception_frame_config import PerceptionPassFailConfig
# REQUIRED:
# dataset_path: str
# model: Your 3D ML model
evaluation_config = PerceptionEvaluationConfig(
dataset_paths=[dataset_path],
frame_id="base_link",
result_root_directory="./data/result",
evaluation_config_dict={"evaluation_task": "detection",...},
load_raw_data=True,
)
# initialize Evaluation Manager
evaluator = PerceptionEvaluationManager(evaluation_config=evaluation_config)
critical_object_filter_config = CriticalObjectFilterConfig(...)
pass_fail_config = PerceptionPassFailConfig(...)
for frame in datasets:
unix_time = frame.unix_time
pointcloud: numpy.ndarray = frame.raw_data["lidar"]
outputs = model(pointcloud)
# create a list of estimated objects with your model's outputs
estimated_objects = [DynamicObject(unix_time=unix_time, ...) for out in outputs]
# add frame result
evaluator.add_frame_result(
unix_time=unix_time,
ground_truth_now_frame=frame,
estimated_objects=estimated_objects,
ros_critical_ground_truth_objects=frame.objects,
critical_object_filter_config=critical_object_filter_config,
frame_pass_fail_config=pass_fail_config,
)
scene_score = evaluator.get_scene_result()