This package is a Julia wrapper of the Fortran programs accompanying Fast and Backward Stable Computation of Roots of Polynomials by Jared L. Aurentz, Thomas Mach, Raf Vandebril and David S. Watkins.
The package provides the unexported function FastPolynomialRoots.rootsFastPolynomialRoots(p::Vector{<:Union{Float64,Complex{Float64}}})
which computes the roots of the polynomial p[1] + p[2]*x + p[3]*x^2 + ... + p[k]*x^(k-1)
. The package also overwrites the roots(::Polynomial)
methods in the Polynomials
package for Float64
and Complex{Float64}
elements with the fast versions provided by this package. See the examples below.
julia> using Polynomials, BenchmarkTools
julia> @btime roots(p) setup=(p = Polynomial(randn(500)));
223.135 ms (23 allocations: 3.97 MiB)
julia> using FastPolynomialRoots
julia> @btime roots(p) setup=(p = Polynomial(randn(500)));
30.786 ms (7 allocations: 26.41 KiB)
A computation of this size would not be feasible on a desktop with the traditional method but can be handled by FastPolynomialRoots.
julia> using Polynomials, BenchmarkTools, FastPolynomialRoots
julia> n = 10000;
julia> r = @btime roots(p) setup=(p = Polynomial(randn(n + 1)));
10.290 s (13 allocations: 508.38 KiB)
julia> sum(isreal, r)
7
julia> 2/π*log(n) + 0.6257358072 + 2/(n*π) # Edelman and Kostlan
6.489284260212659