Skip to content

Commit

Permalink
Update README.
Browse files Browse the repository at this point in the history
  • Loading branch information
trekhleb committed Dec 28, 2018
1 parent ee5bfcd commit 6b907e4
Showing 1 changed file with 3 additions and 3 deletions.
6 changes: 3 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ _Usage examples: stock price forecast, sales analysis, dependency of any number,
- ⚙️ [Code | Linear Regression](homemade/linear_regression/linear_regression.py) - implementation example
- ▶️ [Demo | Univariate Linear Regression](https://nbviewer.jupyter.org/github/trekhleb/homemade-machine-learning/blob/master/notebooks/linear_regression/univariate_linear_regression_demo.ipynb) - predict `country happiness` score by `economy GDP`
- ▶️ [Demo | Multivariate Linear Regression](https://nbviewer.jupyter.org/github/trekhleb/homemade-machine-learning/blob/master/notebooks/linear_regression/multivariate_linear_regression_demo.ipynb) - predict `country happiness` score by `economy GDP` and `freedom index`
- ▶️ [Demo | Non-linear Regression](https://nbviewer.jupyter.org/github/trekhleb/homemade-machine-learning/blob/master/notebooks/linear_regression/non_linear_regression_demo.ipynb) - use linear regression with _polynomial_ and _sinusoid_ features to predict non-linear dependencies.
- ▶️ [Demo | Non-linear Regression](https://nbviewer.jupyter.org/github/trekhleb/homemade-machine-learning/blob/master/notebooks/linear_regression/non_linear_regression_demo.ipynb) - use linear regression with _polynomial_ and _sinusoid_ features to predict non-linear dependencies

### Classification

Expand All @@ -39,8 +39,8 @@ _Usage examples: spam-filters, language detection, finding similar documents, ha
- ⚙️ [Code | Logistic Regression](homemade/logistic_regression/logistic_regression.py) - implementation example
- ▶️ [Demo | Logistic Regression (Linear Boundary)](https://nbviewer.jupyter.org/github/trekhleb/homemade-machine-learning/blob/master/notebooks/logistic_regression/logistic_regression_with_linear_boundary_demo.ipynb) - predict Iris flower `class` based on `petal_length` and `petal_width`
- ▶️ [Demo | Logistic Regression (Non-Linear Boundary)](https://nbviewer.jupyter.org/github/trekhleb/homemade-machine-learning/blob/master/notebooks/logistic_regression/logistic_regression_with_non_linear_boundary_demo.ipynb) - predict microchip `validity` based on `param_1` and `param_2`
- ▶️ [Demo | Multivariate Logistic Regression | MNIST](https://nbviewer.jupyter.org/github/trekhleb/homemade-machine-learning/blob/master/notebooks/logistic_regression/multivariate_logistic_regression_demo.ipynb) - recognize handwritten digits from `28x28` pixel images.
- ▶️ [Demo | Multivariate Logistic Regression | Fashion MNIST](https://nbviewer.jupyter.org/github/trekhleb/homemade-machine-learning/blob/master/notebooks/logistic_regression/multivariate_logistic_regression_fashion_demo.ipynb) - recognize clothes types from `28x28` pixel images.
- ▶️ [Demo | Multivariate Logistic Regression | MNIST](https://nbviewer.jupyter.org/github/trekhleb/homemade-machine-learning/blob/master/notebooks/logistic_regression/multivariate_logistic_regression_demo.ipynb) - recognize handwritten digits from `28x28` pixel images
- ▶️ [Demo | Multivariate Logistic Regression | Fashion MNIST](https://nbviewer.jupyter.org/github/trekhleb/homemade-machine-learning/blob/master/notebooks/logistic_regression/multivariate_logistic_regression_fashion_demo.ipynb) - recognize clothes types from `28x28` pixel images

## Unsupervised Learning

Expand Down

0 comments on commit 6b907e4

Please sign in to comment.