An end-to-end data analytics project exploring global population trends using Python (Jupyter Notebook) and Power BI. This project demonstrates skills in data cleaning, exploratory data analysis (EDA), data visualization, and dashboard design.
Analyze population data to uncover key insights about demographic distribution, growth patterns, and top contributing countries.
Use Python for detailed EDA, cleaning, and visual exploration.
Build an interactive Power BI dashboard for dynamic reporting and stakeholder presentation.
# Optional: Create virtual environment
python -m venv venv
source venv/bin/activate # or venv\Scripts\activate on Windows
# Install required packages
pip install -r requirements.txt
# Launch notebook
jupyter notebook World_Population_EDA.ipynb1. Install Power BI Desktop (if not already installed): Download Power BI
2. Open the Report:
Launch Power BI Desktop.
Open the World_Population_Analysis_Report.pbix file.
3. Explore the Dashboard:
Use filters and slicers to navigate population trends.
Analyze charts to derive insights for research or business use.
Python (Jupyter Notebook): pandas, matplotlib, seaborn, plotly
Power BI: Data modeling, DAX, interactive visualizations
Excel/CSV: Raw data handling
GitHub: Version control and documentation
1. world_population.csv : Cleaned dataset containing country-wise population data.
2. World_Population_EDA.ipynb : Jupyter Notebook performing data cleaning and analysis.
3. World_Population_Analysis_Report.pbix : Power BI dashboard for interactive visualizations.
4. Images : Image files used for previewing visuals in the README.
Performed deep exploratory data analysis in World_Population_EDA.ipynb:
🔍 Key EDA Steps:
Data cleaning & type conversion
Continent-wise analysis
Top N countries by population
Time series population growth trends
Outlier detection using boxplots
Correlation and summary stats
🖼 Sample EDA Visuals: Continent-wise Population Distribution
📈 Population Growth Over Time
🏳️ Top 10 Most Populated Countries
The World_Population_Analysis_Report.pbix file presents the same data in an interactive format using Power BI.
🔹 Features:
Dynamic continent filters
Country-level drill-down
Year-over-year growth comparison
Interactive cards, bar charts, and line graphs
1. Add forecasting (ARIMA or Prophet) for future population growth
2. Integrate GDP, urbanization, or fertility rate metrics
3. Deploy dashboard to Power BI Service for online access
4. Build Streamlit or Flask web version for Python-based UI
.NET Developer | Python Data Analyst | Power BI Enthusiast
