Skip to content

allthingsllm/jambo

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

41 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Jambo - JSON Schema to Pydantic Converter

Tests Coverage
Package version Python versions License

Jambo is a Python package that automatically converts JSON Schema definitions into Pydantic models. It's designed to streamline schema validation and enforce type safety using Pydantic's powerful validation features.

Created to simplifying the process of dynamically generating Pydantic models for AI frameworks like LangChain, CrewAI, and others.


✨ Features

  • ✅ Convert JSON Schema into Pydantic models dynamically
  • 🔒 Supports validation for strings, integers, floats, booleans, arrays, and nested objects
  • ⚙️ Enforces constraints like minLength, maxLength, pattern, minimum, maximum, uniqueItems, and more
  • 📦 Zero config — just pass your schema and get a model

📦 Installation

pip install jambo

🚀 Usage

from jambo.schema_converter import SchemaConverter

schema = {
    "title": "Person",
    "type": "object",
    "properties": {
        "name": {"type": "string"},
        "age": {"type": "integer"},
    },
    "required": ["name"],
}

Person = SchemaConverter.build(schema)

obj = Person(name="Alice", age=30)
print(obj)

✅ Example Validations

Strings with constraints

schema = {
    "title": "EmailExample",
    "type": "object",
    "properties": {
        "email": {
            "type": "string",
            "minLength": 5,
            "maxLength": 50,
            "pattern": r"^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$",
        },
    },
    "required": ["email"],
}

Model = SchemaConverter.build(schema)
obj = Model(email="user@example.com")
print(obj)

Integers with bounds

schema = {
    "title": "AgeExample",
    "type": "object",
    "properties": {
        "age": {"type": "integer", "minimum": 0, "maximum": 120}
    },
    "required": ["age"],
}

Model = SchemaConverter.build(schema)
obj = Model(age=25)
print(obj)

Nested Objects

schema = {
    "title": "NestedObjectExample",
    "type": "object",
    "properties": {
        "address": {
            "type": "object",
            "properties": {
                "street": {"type": "string"},
                "city": {"type": "string"},
            },
            "required": ["street", "city"],
        }
    },
    "required": ["address"],
}

Model = SchemaConverter.build(schema)
obj = Model(address={"street": "Main St", "city": "Gotham"})
print(obj)

🧪 Running Tests

To run the test suite:

poe tests

Or manually:

python -m unittest discover -s tests -v

🛠 Development Setup

To set up the project locally:

  1. Clone the repository
  2. Install uv (if not already installed)
  3. Install dependencies:
uv sync
  1. Set up git hooks:
poe create-hooks

📌 Roadmap / TODO

  • Support for enum and const
  • Support for anyOf, allOf, oneOf
  • Schema ref ($ref) resolution
  • Better error reporting for unsupported schema types

🤝 Contributing

PRs are welcome! This project uses MIT for licensing, so feel free to fork and modify as you see fit.


🧾 License

MIT License.

About

Jambo - JSON Schema to Pydantic Converter

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.7%
  • Shell 0.3%