-
Notifications
You must be signed in to change notification settings - Fork 1.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
New Sampler #3068
Open
huangzhengxiang
wants to merge
14
commits into
alibaba:master
Choose a base branch
from
Embedded-AI-Systems:master
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
New Sampler #3068
Changes from all commits
Commits
Show all changes
14 commits
Select commit
Hold shift + click to select a range
93656a3
first commit for Sampler
huangzhengxiang 656dc18
resolve conflicts
huangzhengxiang beea99f
update docs and remove penalize_ngram with penalty
huangzhengxiang 06736c3
fix the bug of reset
huangzhengxiang 215a21c
add android demo
huangzhengxiang f8d0ddc
Delete docs/transformers/optimizations.md
huangzhengxiang 69e1187
remove some commented lines:
huangzhengxiang 17329be
move _TemperatureSoftmaxto sampler
huangzhengxiang f960a9c
add android demo
huangzhengxiang 0be9c8e
debug android
huangzhengxiang f3dcb29
refactor llm project to retain the previous interfaces for backward c…
huangzhengxiang a16fc02
merge future code for perplexity
huangzhengxiang 028f09a
add perplexity and llm dataset processing, supports wikitext and shar…
huangzhengxiang a6c6298
update time performance experiments and visualization modules
huangzhengxiang File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
datasets/* | ||
!datasets/*.sh | ||
|
||
|
||
!datasets/visualization/ | ||
datasets/visualization/data | ||
datasets/visualization/pic |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
git lfs install | ||
git clone https://huggingface.co/datasets/shareAI/ShareGPT-Chinese-English-90k |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
wget https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip | ||
unzip wikitext-2-raw-v1.zip |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
import matplotlib.pyplot as plt | ||
from matplotlib import colors | ||
from matplotlib.ticker import PercentFormatter | ||
from matplotlib import cbook | ||
from matplotlib.axes import Axes | ||
import pandas as pd | ||
import numpy as np | ||
import argparse | ||
import os | ||
|
||
vis_root = "pic" | ||
|
||
def remove_blanks(df: pd.DataFrame) -> pd.DataFrame: | ||
# Removing unnamed columns using drop function | ||
df.drop(df.columns[df.columns.str.contains( | ||
'unnamed', case=False)], axis=1, inplace=True) | ||
return df | ||
def add_turns(df: pd.DataFrame) -> pd.DataFrame: | ||
df["turns"] = (1-df.isnull()).sum(axis=1) // 2 | ||
return df | ||
def get_max_turn(df: pd.DataFrame) -> int: | ||
keys = list(df.keys()) | ||
return max([int(key.replace("decode", "")) for key in keys if "decode" in key]) + 1 | ||
def add_pd_ratio(df: pd.DataFrame) -> pd.DataFrame: | ||
max_turns = get_max_turn(df) | ||
for i in range(max_turns): | ||
df["pd_ratio{}".format(i)] = df["prefill{}".format(i)] / df["decode{}".format(i)] | ||
return df | ||
def preprocess(file_path: str) -> pd.DataFrame: | ||
table = pd.read_csv(file_path) | ||
table = remove_blanks(table) | ||
table = add_turns(table) | ||
table = add_pd_ratio(table) | ||
print(table) | ||
return table | ||
|
||
def draw_distribution(df: pd.DataFrame, file_path: str): | ||
turns_bin = df.value_counts(subset=["turns"], sort=False) | ||
print(turns_bin) | ||
plt.close() | ||
plt.rcParams['font.size'] = 10 | ||
_, ax = plt.subplots() | ||
# N is the count in each bin, bins is the lower-limit of the bin | ||
N, bins, patches = ax.hist(df["turns"], bins=get_max_turn(df), density=True, align="left", label=True) | ||
# We'll color code by height, but you could use any scalar | ||
fracs = N / N.max() | ||
# we need to normalize the data to 0..1 for the full range of the colormap | ||
norm = colors.Normalize(fracs.min(), fracs.max()) | ||
# Now, we'll loop through our objects and set the color of each accordingly | ||
for thisfrac, thispatch in zip(fracs, patches): | ||
color = plt.cm.viridis(norm(thisfrac)) | ||
thispatch.set_facecolor(color) | ||
# Now we format the y-axis to display percentage | ||
ax.yaxis.set_major_formatter(PercentFormatter(xmax=1)) | ||
ax.set_xlim((0.5, get_max_turn(df)-0.5)) | ||
ax.set_xticks(np.arange(1,get_max_turn(df)+1),np.arange(1,get_max_turn(df)+1),rotation=60, fontsize=9) | ||
ax.set_ylabel("frequency", fontsize=14) | ||
ax.set_xlabel("num of turns", fontsize=14) | ||
plt.savefig(file_path, dpi=600) | ||
plt.close() | ||
|
||
def draw_prefill(df: pd.DataFrame, ax: Axes): | ||
stats = [cbook.boxplot_stats(df[df["prefill{}".format(i)].notna()]["prefill{}".format(i)], labels=[i+1])[0] | ||
for i in range(get_max_turn(df))] | ||
print(stats) | ||
ax.bxp(stats, patch_artist=True, boxprops={'facecolor': 'bisque'}, flierprops=dict(marker='o', markersize=2)) | ||
ax.set_ylim(0,600) | ||
ax.set_yticks(np.arange(0,700,100), np.arange(0,700,100), fontsize=9) | ||
ax.set_ylabel("prefill", fontsize=12, rotation=90) | ||
return | ||
def draw_decode(df: pd.DataFrame, ax: Axes): | ||
stats = [cbook.boxplot_stats(df[df["decode{}".format(i)].notna()]["decode{}".format(i)], labels=[i+1])[0] | ||
for i in range(get_max_turn(df))] | ||
print(stats) | ||
ax.bxp(stats, patch_artist=True, boxprops={'facecolor': 'bisque'}, flierprops=dict(marker='o', markersize=2)) | ||
ax.set_ylim(0,600) | ||
ax.set_yticks(np.arange(0,700,100), np.arange(0,700,100), fontsize=9) | ||
ax.set_ylabel("decode", fontsize=12, rotation=90) | ||
return | ||
def draw_pd_ratio(df: pd.DataFrame, ax: Axes): | ||
stats = [cbook.boxplot_stats(df[df["pd_ratio{}".format(i)].notna()]["pd_ratio{}".format(i)], labels=[i+1])[0] | ||
for i in range(get_max_turn(df))] | ||
print(stats) | ||
ax.bxp(stats, patch_artist=True, boxprops={'facecolor': 'bisque'}, flierprops=dict(marker='o', markersize=2)) | ||
ax.plot(np.arange(0,get_max_turn(df)+2), np.ones_like(np.arange(0,get_max_turn(df)+2),dtype=float)) | ||
ax.set_xlim(0, get_max_turn(df)+1) | ||
ax.set_ylim(0, 2.) | ||
ax.set_xticks(np.arange(1,get_max_turn(df)), np.arange(1,get_max_turn(df)), rotation=60, fontsize=9) | ||
ax.set_yticks([0,0.5,1,2], [0,0.5,1,2], fontsize=9) | ||
ax.set_xlabel("round", fontsize=12) | ||
ax.set_ylabel("prefill/decode", fontsize=12, rotation=90) | ||
return | ||
def draw_reuse_kv(df: pd.DataFrame, file_path: str): | ||
plt.close() | ||
_, axs = plt.subplots(3,1,sharex="col") | ||
draw_prefill(df, axs[0]) | ||
draw_decode(df, axs[1]) | ||
draw_pd_ratio(df, axs[2]) | ||
plt.savefig(file_path, dpi=1200) | ||
plt.close() | ||
return | ||
def draw_no_reuse_kv(): | ||
return | ||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--root", type=str, default="./data") | ||
parser.add_argument("--name", type=str, default="shareGPT_dialog_stats_common_en.csv") | ||
args = parser.parse_args() | ||
|
||
file_path = os.path.join(args.root, args.name) | ||
dist_path = os.path.join(vis_root, args.name.split('.')[0]+"_dist.png") | ||
pd_dist_path = os.path.join(vis_root, args.name.split('.')[0]+"_pd_dist.png") | ||
table = preprocess(file_path) | ||
draw_distribution(table, dist_path) | ||
draw_reuse_kv(table, pd_dist_path) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
import matplotlib.pyplot as plt | ||
from matplotlib import colors | ||
from matplotlib.ticker import PercentFormatter | ||
from matplotlib import cbook | ||
from matplotlib.axes import Axes | ||
from typing import List, Dict, Tuple | ||
import pandas as pd | ||
import numpy as np | ||
import argparse | ||
import os | ||
import re | ||
from io import StringIO | ||
|
||
def split_by_turns(id: str, content: str) -> List[pd.DataFrame]: | ||
pattern = "<{id}>\n(.*?)</{id}>\n".format(id=id) | ||
return [pd.read_csv(StringIO(item)) for item in re.findall(pattern, content, flags=re.DOTALL)] | ||
def preprocess(file_path: str) -> Tuple[List[pd.DataFrame], List[pd.DataFrame]]: | ||
content = open(file_path, "rt").read() | ||
return split_by_turns("prefill", content), split_by_turns("decode", content) | ||
def get_max_turn(no_reuse_prefill_record): | ||
return max(10, max([len(record) for record in no_reuse_prefill_record])) | ||
def draw_history_len(ax: Axes, no_reuse_prefill_record: List[pd.DataFrame]): | ||
max_round = get_max_turn(no_reuse_prefill_record) | ||
history_len = [0 for _ in range(0, max_round)] | ||
for turn in range(0, max_round): | ||
history_len[turn] = np.median([record["input_token"][turn] - record["prompt_token"][turn] | ||
for record in no_reuse_prefill_record if len(record)>=turn+1]).item() | ||
plt.plot(np.arange(1, max_round+1), history_len, label="median history len", marker=".", markersize=8) | ||
return | ||
def draw_prefill_bar_chat(ax: Axes, no_reuse, reuse): | ||
offset = 0.2 | ||
max_round = len(no_reuse) | ||
no_reuse_med = [np.median(turn) for turn in no_reuse] | ||
rects = ax.bar(np.arange(1,max_round+1) + offset, no_reuse_med, offset*2, label="no reuse kv", color="tomato") | ||
ax.bar_label(rects, fmt="{:.2f}", padding=4, fontsize=6) | ||
reuse_med = [np.median(turn) for turn in reuse] | ||
rects = ax.bar(np.arange(1,max_round+1) - offset, reuse_med, offset*2, label="reuse kv", color="springgreen") | ||
ax.bar_label(rects, fmt="{:.2f}", padding=4, fontsize=6) | ||
return | ||
def compare_prefill_reuse_kv(no_reuse_prefill_record: List[pd.DataFrame], | ||
reuse_prefill_record: List[pd.DataFrame]): | ||
plt.close() | ||
_,ax1 = plt.subplots() | ||
ax2 = ax1.twinx() | ||
# plot history_len | ||
draw_history_len(ax2, no_reuse_prefill_record) | ||
# calculate per turn | ||
max_round = get_max_turn(no_reuse_prefill_record) | ||
no_reuse = [[] for _ in range(0, max_round)] | ||
for turn in range(0, max_round): | ||
no_reuse[turn] = [record["response_speed"][turn] for record in no_reuse_prefill_record if len(record)>=turn+1] | ||
reuse = [[] for _ in range(0, max_round)] | ||
for turn in range(0, max_round): | ||
reuse[turn] = [record["response_speed"][turn] for record in reuse_prefill_record if len(record)>=turn+1] | ||
# plot the bar chat (with error bar) | ||
draw_prefill_bar_chat(ax1, no_reuse, reuse) | ||
ax1.set_xticks(np.arange(1,max_round+1),np.arange(1,max_round+1),fontsize=9) | ||
ax1.set_ylim(0,100) | ||
ax2.set_ylim(0,1000) | ||
ax1.legend(loc='upper left', title="prefill response speed") | ||
ax2.legend(loc='upper right') | ||
ax1.set_ylabel("prefill\nresponse\nspeed", rotation=0, labelpad=12) | ||
ax2.set_ylabel("history\nlen", rotation=0, labelpad=8) | ||
ax1.set_xlabel("round") | ||
plt.title("KV cache reuse for multi-turn chat\neffects on ShareGPT") | ||
plt.tight_layout() | ||
plt.savefig("./pic/fig.png",dpi=1200) | ||
plt.close() | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--root", type=str, default="./data") | ||
parser.add_argument("--no_reuse", type=str, default="shareGPT_common_en_70k_noreuse.txt") | ||
parser.add_argument("--reuse", type=str, default="shareGPT_common_en_70k_reuse.txt") | ||
args = parser.parse_args() | ||
|
||
no_reuse_file_path = os.path.join(args.root, args.no_reuse) | ||
reuse_file_path = os.path.join(args.root, args.reuse) | ||
no_reuse_prefill_record, no_reuse_decode_record = preprocess(no_reuse_file_path) | ||
reuse_prefill_record, reuse_decode_record = preprocess(reuse_file_path) | ||
# visualize prefill | ||
compare_prefill_reuse_kv(no_reuse_prefill_record, reuse_prefill_record) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
这个是否会影响计算精度?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
从测试效果来看不会,已在Llama3.2, Qwen2.5, Qwen2-VL上进行了测试