-
Notifications
You must be signed in to change notification settings - Fork 219
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
87 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
# Fairness in Federated Learning | ||
|
||
|
||
## Fairness - Demographic Disparity | ||
### 2022 | ||
| Title | Venue | Link | ||
| ------------------------------------------------------------ | ---------- |--------------------------------------------- | ||
| Privfairfl: Privacy-preserving group fairness in federated learning | arxiv | [pdf](https://arxiv.org/pdf/2205.11584v1.pdf) | ||
| Fair federated learning for heterogeneous data | IKDD CODS & COMAD | [pdf](https://dl.acm.org/doi/fullHtml/10.1145/3493700.3493750) | ||
|
||
|
||
### 2021 | ||
| Title | Venue | Link | ||
| ------------------------------------------------------------ | ---------- |--------------------------------------------- | ||
| Addressing algorithmic disparity and performance inconsistency in federated learning| NeurIPS Workshop| [pdf](https://arxiv.org/pdf/2108.08435.pdf) | ||
|Enforcing fairness in private federated learning via the modified method of differential multipliers| NeurIPS Workshop| [pdf](https://arxiv.org/abs/2109.08604) | ||
| Fairness-aware agnostic federated learning | SDM|[pdf](https://arxiv.org/pdf/2010.05057.pdf) | ||
| Federated adversarial debiasing for fair and transferable representations| KDD| [pdf](https://dl.acm.org/doi/pdf/10.1145/3447548.3467281) | ||
|
||
|
||
### 2019 | ||
| Title | Venue | Link | ||
| ------------------------------------------------------------ | ---------- |--------------------------------------------- | ||
|Agnostic federated learning | ICML| [pdf](http://proceedings.mlr.press/v97/mohri19a/mohri19a.pdf) | ||
|
||
|
||
## Fairness - Client performance parity | ||
|
||
### Survey | ||
| Title | Venue | Link | ||
| ------------------------------------------------------------ | ---------- |--------------------------------------------- | ||
|Non-iid data and continual learning processes in federated learning: A long road ahead| Information Fution| [pdf](https://arxiv.org/pdf/2111.13394.pdf) | ||
|Federated learning on non-iid data silos: An experimental study | ICDE|[pdf](https://arxiv.org/pdf/2102.02079.pdf) | ||
|Federated learning on non-iid data: A survey | Neurocomputing | [pdf](https://arxiv.org/pdf/2106.06843.pdf) | ||
|
||
|
||
### 2022 | ||
| Title | Venue | Link | ||
| ------------------------------------------------------------ | ---------- |--------------------------------------------- | ||
|Fedmgda+: Federated learning meets multi-objective optimization | IEEE Transactions on Network Science and Engineering| [pdf](https://arxiv.org/pdf/2006.11489.pdf) | ||
|
||
|
||
### 2021 | ||
| Title | Venue | Link | ||
| ------------------------------------------------------------ | ---------- |--------------------------------------------- | ||
|Ditto: Fair and robust federated learning through personalization| ICML | [pdf](http://proceedings.mlr.press/v139/li21h/li21h.pdf) | ||
|
||
|
||
### 2020 | ||
| Title | Venue | Link | ||
| ------------------------------------------------------------ | ---------- |--------------------------------------------- | ||
|Federated optimization in heterogeneous networks| ICML| [pdf](https://arxiv.org/pdf/1812.06127.pdf) | ||
|Fair resource allocation in federated learning | ICLR | [pdf](https://arxiv.org/pdf/1905.10497.pdf) | ||
| Scaffold: Stochastic controlled averaging for federated learning| ICML | [pdf](https://arxiv.org/pdf/1910.06378.pdf) | ||
|
||
|
||
## Fairness - Collaborative fairness | ||
|
||
### Survey | ||
| Title | Venue | Link | ||
| ------------------------------------------------------------ | ---------- |--------------------------------------------- | ||
|A comprehensive survey of incentive mechanism for federated learning| arXiv | [pdf](https://arxiv.org/pdf/2106.15406.pdf) | ||
|
||
|
||
### 2022 | ||
| Title | Venue | Link | ||
| ------------------------------------------------------------ | ---------- |--------------------------------------------- | ||
|Collaboration equilibrium in federated learning| KDD | [pdf](https://arxiv.org/pdf/2108.07926.pdf) | ||
| Fedfaim: A model performance-based fair incentive mechanism for federated learning| IEEE Transactionson Big Data| [pdf](https://ieeexplore.ieee.org/document/9797864) | ||
|
||
|
||
|
||
### 2021 | ||
| Title | Venue | Link | ||
| ------------------------------------------------------------ | ---------- |--------------------------------------------- | ||
|Incentive mechanism for horizontal federated learning based on reputation and reverse auction | WWW | [pdf](https://dl.acm.org/doi/10.1145/3442381.3449888) | ||
| One for one, or all for all: Equilibria and optimality of collaboration in federated learning | ICML | [pdf](https://arxiv.org/pdf/2103.03228.pdf) | ||
|
||
|
||
### 2020 | ||
| Title | Venue | Link | ||
| ------------------------------------------------------------ | ---------- |--------------------------------------------- | ||
|A fairness-aware incentive scheme for federated learning| AIES | [pdf](https://dl.acm.org/doi/10.1145/3375627.3375840) | ||
| Collaborative fairness in federated learning | Federated Learning | [pdf](https://arxiv.org/pdf/2008.12161.pdf) | ||
| Towards fair and privacy-preserving federated deep models | IEEE TPDS | [pdf](https://arxiv.org/pdf/1906.01167.pdf) | ||
|