Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Yolox export & blade optimize support #49

Closed
wants to merge 14 commits into from
90 changes: 90 additions & 0 deletions configs/detection/yolox/yolox_s_8xb16_300e_voc_jit.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
_base_ = './yolox_s_8xb16_300e_coco.py'

# s m l x
img_scale = (640, 640)
random_size = (14, 26)
scale_ratio = (0.1, 2)

# tiny nano without mixup
# img_scale = (416, 416)
# random_size = (10, 20)
# scale_ratio = (0.5, 1.5)

CLASSES = [
'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat',
'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person',
'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'
]

# dataset settings
data_root = 'data/voc/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)

train_pipeline = [
dict(type='MMMosaic', img_scale=img_scale, pad_val=114.0),
dict(
type='MMRandomAffine',
scaling_ratio_range=scale_ratio,
border=(-img_scale[0] // 2, -img_scale[1] // 2)),
dict(
type='MMMixUp', # s m x l; tiny nano will detele
img_scale=img_scale,
ratio_range=(0.8, 1.6),
pad_val=114.0),
dict(
type='MMPhotoMetricDistortion',
brightness_delta=32,
contrast_range=(0.5, 1.5),
saturation_range=(0.5, 1.5),
hue_delta=18),
dict(type='MMRandomFlip', flip_ratio=0.5),
dict(type='MMResize', keep_ratio=True),
dict(type='MMPad', pad_to_square=True, pad_val=(114.0, 114.0, 114.0)),
dict(type='MMNormalize', **img_norm_cfg),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
dict(type='MMResize', img_scale=img_scale, keep_ratio=True),
dict(type='MMPad', pad_to_square=True, pad_val=(114.0, 114.0, 114.0)),
dict(type='MMNormalize', **img_norm_cfg),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img'])
]

train_dataset = dict(
type='DetImagesMixDataset',
data_source=dict(
type='DetSourceVOC',
path=data_root + 'ImageSets/Main/train.txt',
classes=CLASSES,
cache_at_init=True),
pipeline=train_pipeline,
dynamic_scale=img_scale)

val_dataset = dict(
type='DetImagesMixDataset',
imgs_per_gpu=2,
data_source=dict(
type='DetSourceVOC',
path=data_root + 'ImageSets/Main/val.txt',
classes=CLASSES,
cache_at_init=True),
pipeline=test_pipeline,
dynamic_scale=None,
label_padding=False)

data = dict(
imgs_per_gpu=16, workers_per_gpu=4, train=train_dataset, val=val_dataset)

# # evaluation
eval_pipelines = [
dict(
mode='test',
data=data['val'],
evaluators=[dict(type='CocoDetectionEvaluator', classes=CLASSES)],
)
]

export = dict(use_jit=True, export_blade=False)
80 changes: 63 additions & 17 deletions easycv/apis/export.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
from easycv.file import io
from easycv.models import (DINO, MOCO, SWAV, YOLOX, Classification, MoBY,
build_model)
from easycv.toolkit.blade import blade_env_assert, blade_optimize
from easycv.utils.checkpoint import load_checkpoint

__all__ = ['export']
Expand Down Expand Up @@ -151,25 +152,70 @@ def _export_yolox(model, cfg, filename):
cfg: Config object
filename (str): filename to save exported models
"""
if hasattr(cfg, 'test_pipeline'):
# with last pipeline Collect
test_pipeline = cfg.test_pipeline
print(test_pipeline)
else:
print('test_pipeline not found, using default preprocessing!')
raise ValueError('export model config without test_pipeline')
cfg.model.type = 'YOLOXExport'
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

remove YOLOXExport api, should be a tool not a model

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

it may be different for different model, we use
yolox blade as name because the blacklist op for blade is specialized for yolox, whether
useful for other cnn or transformer need to be checked later

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

or support export mode in model

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

need fix

if hasattr(cfg, 'export') and getattr(cfg.export, 'use_jit', False):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model_export = build_model(cfg.model)
model_export.eval()
model_export.to(device)
model_export.load_state_dict(model.state_dict())
batch_size = cfg.export.get('batch_size', 1)
img_scale = cfg.get('img_scale', (640, 640))
assert (
len(img_scale) == 2
), 'Export YoloX predictor config contains img_scale must be (int, int) tuple!'
input = 255 * torch.rand((batch_size, 3) + img_scale)

# well trained model will generate reasonable result, otherwise, we should change model.test_conf=0.0 to avoid tensor in inference to be empty
try:
yolox_trace = torch.jit.trace(model_export, input.to(device))
except:
model_export.test_conf = 0.0
yolox_trace = torch.jit.trace(model_export, input.to(device))

if getattr(cfg.export, 'export_blade', False):
blade_config = cfg.export.get('blade_config',
dict(enable_fp16=True))
if blade_env_assert() == True:
yolox_blade = blade_optimize(
script_model=model_export,
model=yolox_trace,
inputs=(input.to(device), ),
blade_config=blade_config)
with io.open(filename + '.blade', 'wb') as ofile:
torch.jit.save(yolox_blade, ofile)
with io.open(filename + '.blade.classnames.json',
'w') as ofile:
json.dump(cfg.CLASSES, ofile)
else:
logging.warning('Export YoloX predictor with blade failed!')

with io.open(filename + '.jit', 'wb') as ofile:
torch.jit.save(yolox_trace, ofile)

with io.open(filename + '.jit.classnames.json', 'w') as ofile:
json.dump(cfg.CLASSES, ofile)

config = dict(
model=cfg.model,
test_pipeline=test_pipeline,
CLASSES=cfg.CLASSES,
)
else:
if hasattr(cfg, 'test_pipeline'):
# with last pipeline Collect
test_pipeline = cfg.test_pipeline
print(test_pipeline)
else:
print('test_pipeline not found, using default preprocessing!')
raise ValueError('export model config without test_pipeline')

config = dict(
model=cfg.model,
test_pipeline=test_pipeline,
CLASSES=cfg.CLASSES,
)

meta = dict(config=json.dumps(config))
checkpoint = dict(
state_dict=model.state_dict(), meta=meta, author='EasyCV')
with io.open(filename, 'wb') as ofile:
torch.save(checkpoint, ofile)
meta = dict(config=json.dumps(config))
checkpoint = dict(
state_dict=model.state_dict(), meta=meta, author='EasyCV')
with io.open(filename, 'wb') as ofile:
torch.save(checkpoint, ofile)


def _export_swav(model, cfg, filename):
Expand Down
4 changes: 2 additions & 2 deletions easycv/models/detection/utils/boxes.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,10 +43,10 @@ def postprocess(prediction, num_classes, conf_thre=0.7, nms_thre=0.45):

output = [None for _ in range(len(prediction))]
for i, image_pred in enumerate(prediction):

# If none are remaining => process next image
if not image_pred.size(0):
continue

# Get score and class with highest confidence
class_conf, class_pred = torch.max(
image_pred[:, 5:5 + num_classes], 1, keepdim=True)
Expand All @@ -57,9 +57,9 @@ def postprocess(prediction, num_classes, conf_thre=0.7, nms_thre=0.45):
detections = torch.cat(
(image_pred[:, :5], class_conf, class_pred.float()), 1)
detections = detections[conf_mask]

if not detections.size(0):
continue

if LooseVersion(torchvision.__version__) >= LooseVersion('0.8.0'):
nms_out_index = torchvision.ops.batched_nms(
detections[:, :4], detections[:, 4] * detections[:, 5],
Expand Down
26 changes: 26 additions & 0 deletions easycv/models/detection/yolox/yolox.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,7 @@ def __init__(self,
self.test_conf = test_conf
self.nms_thre = nms_thre
self.test_size = test_size
self.traceable = False

def forward_train(self,
img: Tensor,
Expand Down Expand Up @@ -165,3 +166,28 @@ def forward_compression(self, x):
outputs = self.head(fpn_outs)

return outputs


@MODELS.register_module
class YOLOXExport(YOLOX):
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

remove YOLOXExport

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

using yoloXExport to fit the jit trace input/output requirenments, otherwise we should change the original YOLOX and add a config for it to open the post process.


def __init__(self, *args, **kwargs):
super(YOLOXExport, self).__init__(*args, **kwargs)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.traceable = True
self.backbone = self.backbone.to(device)
self.head = self.head.to(device)
for param in self.backbone.parameters():
param.requires_grad = False
for param in self.head.parameters():
param.requires_grad = False

def forward(self, img):
with torch.no_grad():

fpn_outs = self.backbone(img)
outputs = self.head(fpn_outs)

outputs = postprocess(outputs, self.num_classes, self.test_conf,
self.nms_thre)
return outputs
Loading