Asynchronous python driver for ArangoDB, a scalable multi-model database natively supporting documents, graphs and search.
This project is based off of the orginal work from python-arango and aioarango.
- ArangoDB version 3.7+
- Python version 3.7+
pip install python_aioarango
Here is a simple usage example:
from python_aioarango import ArangoClient
# Initialize the client for ArangoDB.
client = ArangoClient(hosts="http://localhost:8529")
# Connect to "_system" database as root user.
sys_db = await client.db("_system", username="root", password="passwd")
# Create a new database named "test".
await sys_db.create_database("test")
# Connect to "test" database as root user.
db = await client.db("test", username="root", password="passwd")
# Create a new collection named "students".
students = await db.create_collection("students")
# Add a hash index to the collection.
await students.add_hash_index(fields=["name"], unique=True)
# Insert new documents into the collection.
await students.insert({"name": "jane", "age": 39})
await students.insert({"name": "josh", "age": 18})
await students.insert({"name": "judy", "age": 21})
# Execute an AQL query and iterate through the result cursor.
cursor = await db.aql.execute("FOR doc IN students RETURN doc")
student_names = [document["name"] async for document in cursor]
Another example with graphs:
from python_aioarango import ArangoClient
# Initialize the client for ArangoDB.
client = ArangoClient(hosts="http://localhost:8529")
# Connect to "test" database as root user.
db = await client.db("test", username="root", password="passwd")
# Create a new graph named "school".
graph = await db.create_graph("school")
# Create vertex collections for the graph.
students = await graph.create_vertex_collection("students")
lectures = await graph.create_vertex_collection("lectures")
# Create an edge definition (relation) for the graph.
edges = await graph.create_edge_definition(
edge_collection="register",
from_vertex_collections=["students"],
to_vertex_collections=["lectures"]
)
# Insert vertex documents into "students" (from) vertex collection.
await students.insert({"_key": "01", "full_name": "Anna Smith"})
await students.insert({"_key": "02", "full_name": "Jake Clark"})
await students.insert({"_key": "03", "full_name": "Lisa Jones"})
# Insert vertex documents into "lectures" (to) vertex collection.
await lectures.insert({"_key": "MAT101", "title": "Calculus"})
await lectures.insert({"_key": "STA101", "title": "Statistics"})
await lectures.insert({"_key": "CSC101", "title": "Algorithms"})
# Insert edge documents into "register" edge collection.
await edges.insert({"_from": "students/01", "_to": "lectures/MAT101"})
await edges.insert({"_from": "students/01", "_to": "lectures/STA101"})
await edges.insert({"_from": "students/01", "_to": "lectures/CSC101"})
await edges.insert({"_from": "students/02", "_to": "lectures/MAT101"})
await edges.insert({"_from": "students/02", "_to": "lectures/STA101"})
await edges.insert({"_from": "students/03", "_to": "lectures/CSC101"})
# Traverse the graph in outbound direction, breadth-first.
result = await graph.traverse(
start_vertex="students/01",
direction="outbound",
strategy="breadthfirst"
)