forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Feature] Support BiSeNetV1 (open-mmlab#851)
* First Commit * fix typos * fix typos * Fix assertion bug * Adding Assert * Adding Unittest * Fixing typo * Uploading models & logs * Fixing unittest error * changing README.md * changing README.md
- Loading branch information
1 parent
2aa632e
commit ab12009
Showing
14 changed files
with
767 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
# model settings | ||
norm_cfg = dict(type='SyncBN', requires_grad=True) | ||
model = dict( | ||
type='EncoderDecoder', | ||
backbone=dict( | ||
type='BiSeNetV1', | ||
in_channels=3, | ||
context_channels=(128, 256, 512), | ||
spatial_channels=(64, 64, 64, 128), | ||
out_indices=(0, 1, 2), | ||
out_channels=256, | ||
backbone_cfg=dict( | ||
type='ResNet', | ||
in_channels=3, | ||
depth=18, | ||
num_stages=4, | ||
out_indices=(0, 1, 2, 3), | ||
dilations=(1, 1, 1, 1), | ||
strides=(1, 2, 2, 2), | ||
norm_cfg=norm_cfg, | ||
norm_eval=False, | ||
style='pytorch', | ||
contract_dilation=True), | ||
norm_cfg=norm_cfg, | ||
align_corners=False, | ||
init_cfg=None), | ||
decode_head=dict( | ||
type='FCNHead', | ||
in_channels=256, | ||
in_index=0, | ||
channels=256, | ||
num_convs=1, | ||
concat_input=False, | ||
dropout_ratio=0.1, | ||
num_classes=19, | ||
norm_cfg=norm_cfg, | ||
align_corners=False, | ||
loss_decode=dict( | ||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), | ||
auxiliary_head=[ | ||
dict( | ||
type='FCNHead', | ||
in_channels=128, | ||
channels=64, | ||
num_convs=1, | ||
num_classes=19, | ||
in_index=1, | ||
norm_cfg=norm_cfg, | ||
concat_input=False, | ||
align_corners=False, | ||
loss_decode=dict( | ||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), | ||
dict( | ||
type='FCNHead', | ||
in_channels=128, | ||
channels=64, | ||
num_convs=1, | ||
num_classes=19, | ||
in_index=2, | ||
norm_cfg=norm_cfg, | ||
concat_input=False, | ||
align_corners=False, | ||
loss_decode=dict( | ||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), | ||
], | ||
# model training and testing settings | ||
train_cfg=dict(), | ||
test_cfg=dict(mode='whole')) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,42 @@ | ||
# BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation | ||
|
||
## Introduction | ||
|
||
<!-- [ALGORITHM] --> | ||
|
||
<a href="https://github.com/ycszen/TorchSeg/tree/master/model/bisenet">Official Repo</a> | ||
|
||
<a href="https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv1.py#L266">Code Snippet</a> | ||
|
||
<details> | ||
<summary align="right"><a href="https://arxiv.org/abs/1808.00897">BiSeNetV1 (ECCV'2018)</a></summary> | ||
|
||
```latex | ||
@inproceedings{yu2018bisenet, | ||
title={Bisenet: Bilateral segmentation network for real-time semantic segmentation}, | ||
author={Yu, Changqian and Wang, Jingbo and Peng, Chao and Gao, Changxin and Yu, Gang and Sang, Nong}, | ||
booktitle={Proceedings of the European conference on computer vision (ECCV)}, | ||
pages={325--341}, | ||
year={2018} | ||
} | ||
``` | ||
|
||
</details> | ||
|
||
## Results and models | ||
|
||
### Cityscapes | ||
|
||
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | | ||
| --------- | --------- | --------- | ------: | -------- | -------------- | ----: | ------------- | --------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ||
| BiSeNetV1 (No Pretrain) | R-18-D32 | 1024x1024 | 160000 | 5.69 | 31.77 | 74.44 | 77.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/bisenetv1/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes_20210922_172239-c55e78e2.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes_20210922_172239.log.json) | | ||
| BiSeNetV1| R-18-D32 | 1024x1024 | 160000 | 5.69 | 31.77 | 74.37 | 76.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210905_220251-8ba80eff.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210905_220251.log.json) | | ||
| BiSeNetV1 (4x8) | R-18-D32 | 1024x1024 | 160000 | 11.17 | 31.77 | 75.16 | 77.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes_20210905_220322-bb8db75f.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes_20210905_220322.log.json) | | ||
| BiSeNetV1 (No Pretrain) | R-50-D32 | 1024x1024 | 160000 | 3.3 | 7.71 | 76.92 | 78.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/bisenetv1/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes_20210923_222639-7b28a2a6.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes_20210923_222639.log.json) | | ||
| BiSeNetV1 | R-50-D32 | 1024x1024 | 160000 | 15.39 | 7.71 | 77.68 | 79.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/bisenetv1/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210917_234628-8b304447.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210917_234628.log.json) | | ||
|
||
Note: | ||
|
||
- `4x8`: Using 4 GPUs with 8 samples per GPU in training. | ||
- Default setting is 4 GPUs with 4 samples per GPU in training. | ||
- `No Pretrain` means the model is trained from scratch. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
Collections: | ||
- Name: bisenetv1 | ||
Metadata: | ||
Training Data: | ||
- Cityscapes | ||
Paper: | ||
URL: https://arxiv.org/abs/1808.00897 | ||
Title: 'BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation' | ||
README: configs/bisenetv1/README.md | ||
Code: | ||
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv1.py#L266 | ||
Version: v0.18.0 | ||
Converted From: | ||
Code: https://github.com/ycszen/TorchSeg/tree/master/model/bisenet | ||
Models: | ||
- Name: bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes | ||
In Collection: bisenetv1 | ||
Metadata: | ||
backbone: R-18-D32 | ||
crop size: (1024,1024) | ||
lr schd: 160000 | ||
inference time (ms/im): | ||
- value: 31.48 | ||
hardware: V100 | ||
backend: PyTorch | ||
batch size: 1 | ||
mode: FP32 | ||
resolution: (1024,1024) | ||
memory (GB): 5.69 | ||
Results: | ||
- Task: Semantic Segmentation | ||
Dataset: Cityscapes | ||
Metrics: | ||
mIoU: 74.44 | ||
mIoU(ms+flip): 77.05 | ||
Config: configs/bisenetv1/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes.py | ||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes_20210922_172239-c55e78e2.pth | ||
- Name: bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes | ||
In Collection: bisenetv1 | ||
Metadata: | ||
backbone: R-18-D32 | ||
crop size: (1024,1024) | ||
lr schd: 160000 | ||
inference time (ms/im): | ||
- value: 31.48 | ||
hardware: V100 | ||
backend: PyTorch | ||
batch size: 1 | ||
mode: FP32 | ||
resolution: (1024,1024) | ||
memory (GB): 5.69 | ||
Results: | ||
- Task: Semantic Segmentation | ||
Dataset: Cityscapes | ||
Metrics: | ||
mIoU: 74.37 | ||
mIoU(ms+flip): 76.91 | ||
Config: configs/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes.py | ||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210905_220251-8ba80eff.pth | ||
- Name: bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes | ||
In Collection: bisenetv1 | ||
Metadata: | ||
backbone: R-18-D32 | ||
crop size: (1024,1024) | ||
lr schd: 160000 | ||
inference time (ms/im): | ||
- value: 31.48 | ||
hardware: V100 | ||
backend: PyTorch | ||
batch size: 1 | ||
mode: FP32 | ||
resolution: (1024,1024) | ||
memory (GB): 11.17 | ||
Results: | ||
- Task: Semantic Segmentation | ||
Dataset: Cityscapes | ||
Metrics: | ||
mIoU: 75.16 | ||
mIoU(ms+flip): 77.24 | ||
Config: configs/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes.py | ||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes_20210905_220322-bb8db75f.pth | ||
- Name: bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes | ||
In Collection: bisenetv1 | ||
Metadata: | ||
backbone: R-50-D32 | ||
crop size: (1024,1024) | ||
lr schd: 160000 | ||
inference time (ms/im): | ||
- value: 129.7 | ||
hardware: V100 | ||
backend: PyTorch | ||
batch size: 1 | ||
mode: FP32 | ||
resolution: (1024,1024) | ||
memory (GB): 3.3 | ||
Results: | ||
- Task: Semantic Segmentation | ||
Dataset: Cityscapes | ||
Metrics: | ||
mIoU: 76.92 | ||
mIoU(ms+flip): 78.87 | ||
Config: configs/bisenetv1/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes.py | ||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes_20210923_222639-7b28a2a6.pth | ||
- Name: bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes | ||
In Collection: bisenetv1 | ||
Metadata: | ||
backbone: R-50-D32 | ||
crop size: (1024,1024) | ||
lr schd: 160000 | ||
inference time (ms/im): | ||
- value: 129.7 | ||
hardware: V100 | ||
backend: PyTorch | ||
batch size: 1 | ||
mode: FP32 | ||
resolution: (1024,1024) | ||
memory (GB): 15.39 | ||
Results: | ||
- Task: Semantic Segmentation | ||
Dataset: Cityscapes | ||
Metrics: | ||
mIoU: 77.68 | ||
mIoU(ms+flip): 79.57 | ||
Config: configs/bisenetv1/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes.py | ||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210917_234628-8b304447.pth |
11 changes: 11 additions & 0 deletions
11
configs/bisenetv1/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
_base_ = [ | ||
'../_base_/models/bisenetv1_r18-d32.py', | ||
'../_base_/datasets/cityscapes_1024x1024.py', | ||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' | ||
] | ||
lr_config = dict(warmup='linear', warmup_iters=1000) | ||
optimizer = dict(lr=0.025) | ||
data = dict( | ||
samples_per_gpu=4, | ||
workers_per_gpu=4, | ||
) |
16 changes: 16 additions & 0 deletions
16
configs/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
_base_ = [ | ||
'../_base_/models/bisenetv1_r18-d32.py', | ||
'../_base_/datasets/cityscapes_1024x1024.py', | ||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' | ||
] | ||
model = dict( | ||
backbone=dict( | ||
backbone_cfg=dict( | ||
init_cfg=dict( | ||
type='Pretrained', checkpoint='open-mmlab://resnet18_v1c')))) | ||
lr_config = dict(warmup='linear', warmup_iters=1000) | ||
optimizer = dict(lr=0.025) | ||
data = dict( | ||
samples_per_gpu=4, | ||
workers_per_gpu=4, | ||
) |
5 changes: 5 additions & 0 deletions
5
configs/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
_base_ = './bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes.py' | ||
data = dict( | ||
samples_per_gpu=8, | ||
workers_per_gpu=8, | ||
) |
46 changes: 46 additions & 0 deletions
46
configs/bisenetv1/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
_base_ = [ | ||
'../_base_/models/bisenetv1_r18-d32.py', | ||
'../_base_/datasets/cityscapes_1024x1024.py', | ||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' | ||
] | ||
norm_cfg = dict(type='SyncBN', requires_grad=True) | ||
model = dict( | ||
type='EncoderDecoder', | ||
backbone=dict( | ||
type='BiSeNetV1', | ||
context_channels=(512, 1024, 2048), | ||
spatial_channels=(256, 256, 256, 512), | ||
out_channels=1024, | ||
backbone_cfg=dict( | ||
init_cfg=dict( | ||
type='Pretrained', checkpoint='open-mmlab://resnet50_v1c'), | ||
type='ResNet', | ||
depth=50)), | ||
decode_head=dict( | ||
type='FCNHead', in_channels=1024, in_index=0, channels=1024), | ||
auxiliary_head=[ | ||
dict( | ||
type='FCNHead', | ||
in_channels=512, | ||
channels=256, | ||
num_convs=1, | ||
num_classes=19, | ||
in_index=1, | ||
norm_cfg=norm_cfg, | ||
concat_input=False), | ||
dict( | ||
type='FCNHead', | ||
in_channels=512, | ||
channels=256, | ||
num_convs=1, | ||
num_classes=19, | ||
in_index=2, | ||
norm_cfg=norm_cfg, | ||
concat_input=False), | ||
]) | ||
lr_config = dict(warmup='linear', warmup_iters=1000) | ||
optimizer = dict(lr=0.05) | ||
data = dict( | ||
samples_per_gpu=4, | ||
workers_per_gpu=4, | ||
) |
7 changes: 7 additions & 0 deletions
7
configs/bisenetv1/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
_base_ = './bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes.py' | ||
model = dict( | ||
type='EncoderDecoder', | ||
backbone=dict( | ||
backbone_cfg=dict( | ||
init_cfg=dict( | ||
type='Pretrained', checkpoint='open-mmlab://resnet50_v1c')))) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.