Skip to content

Commit

Permalink
add simple nn
Browse files Browse the repository at this point in the history
  • Loading branch information
ale3otik committed Dec 2, 2017
1 parent 9417936 commit d511045
Show file tree
Hide file tree
Showing 2 changed files with 44 additions and 10 deletions.
17 changes: 10 additions & 7 deletions models/dnn.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
import keras.backend as K
from keras.layers import Dense, Activation, Input, LSTM, Dropout, multiply, Lambda
from keras.layers import Dense, Activation, Input, LSTM, Dropout, multiply, Lambda, BatchNormalization
from keras.layers import RNN
from keras.models import Model, Sequential
from keras import optimizers
Expand All @@ -13,27 +13,30 @@

def nn_1(input_shape=None, drop_val=0.1, eps_reg=1e-2, hidden_units=200):
model = Sequential()
model.add(Dense(hidden_units=hidden_units, input_shape=(input_shape,),
model.add(Dense(units=hidden_units,
input_shape=(input_shape,),
kernel_initializer='normal',
kernel_regularizer=regularizers.l2(0.01)
activation=tanh,
kernel_regularizer=regularizers.l2(eps_reg),
activation=tanh
))

model.add(Dropout(drop_val))
# model.add(LeakyReLU(alpha=0.01))
model.add(Dense(units=hidden_units,
kernel_initializer='normal',
kernel_regularizer=regularizers.l2(eps_reg)
kernel_regularizer=regularizers.l2(eps_reg),
activation=tanh
))
model.add(Dropout(0.1))
model.add(BatchNormalization())

model.add(Dense(units=1,
kernel_initializer='normal',
kernel_regularizer=regularizers.l2(eps_reg),
activation=linear,
activation=linear
))
optimizer = optimizers.Adam(optimizers.Adam(1e-3, clipvalue=10.0))

optimizer = optimizers.Adam(1e-3, clipvalue=10.0)
model.compile(loss='mean_squared_error', optimizer=optimizer)
return model

Expand Down
37 changes: 34 additions & 3 deletions models/keras_lstm_usage.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 2,
"metadata": {
"collapsed": false
},
Expand All @@ -12,6 +12,37 @@
"import keras.layers"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(100, 10)\n",
"(100, 1)\n",
"Epoch 1/20"
]
}
],
"source": [
"import dnn\n",
"import numpy as np\n",
"import pandas as pd \n",
"reload(dnn)\n",
"# model = keras_lstm.keras_lstm_model_1(max_sequence_length=100,input_shape=10)\n",
"model = dnn.nn_1(input_shape=10)\n",
"x = np.random.random(1000).reshape(100,10)\n",
"y = np.random.random(100).reshape(100,1)\n",
"print(x.shape)\n",
"print(y.shape)\n",
"model.fit(x=x,y=y, epochs=20, verbose=1,batch_size=5)"
]
},
{
"cell_type": "code",
"execution_count": 4,
Expand Down Expand Up @@ -174,7 +205,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python [default]",
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
Expand All @@ -188,7 +219,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
"version": "3.5.3"
}
},
"nbformat": 4,
Expand Down

0 comments on commit d511045

Please sign in to comment.