-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
461 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,122 @@ | ||
# import keras.backend as K | ||
# from keras.layers import Dense, Activation, Input, LSTM,LSTMCell, Dropout, multiply, Lambda | ||
# from keras.models import Model, Sequential | ||
# from keras import optimizers | ||
# from keras import regularizers | ||
# import tensorflow as tf | ||
# from keras.activations import sigmoid, linear, tanh | ||
# from keras import backend as K | ||
# from keras.engine.topology import Layer | ||
# import numpy as np | ||
# from keras.losses import mean_squared_error | ||
# from keras import optimizers | ||
|
||
# class PhasedLSTMCell(keras.layers.Layer): | ||
|
||
# def __init__(self, units, cell, **kwargs): | ||
# self.units = units | ||
# self.state_size = units | ||
# self.cell = cell | ||
# super(PhasedLSTMCell, self).__init__(**kwargs) | ||
|
||
# def build(self, input_shape): | ||
# self.built = True | ||
|
||
# def call(self, inputs, states): | ||
# tuple_inputs = tf.split(inputs, (inputs.shape[-1]-1,1), axis=-1) | ||
# return self.cell(tuple_inputs, states) | ||
|
||
# class MyLayer(Layer): | ||
# def __init__(self, lstm_units=50,max_sequence_length=100): | ||
# self.lstm_units = lstm_units | ||
# self.max_sequence_length=max_sequence_length | ||
# self.cell = tf.contrib.rnn.PhasedLSTMCell(num_units=self.lstm_units) | ||
# super(MyLayer, self).__init__() | ||
|
||
# def build(self, input_shape): | ||
# self.shape = input_shape | ||
# super(MyLayer, self).build(input_shape) | ||
|
||
# def call(self, inputs, **kwargs): | ||
# features, times = tf.split(inputs,[inputs.get_shape().as_list()[-1]-1, 1] ,axis=-1) | ||
# print('feature', features.shape) | ||
# print('times' , times.shape) | ||
# lstm_layer, state = tf.nn.dynamic_rnn(self.cell, inputs=(features, times), dtype=tf.float32) | ||
# print('lstm', lstm_layer.shape) | ||
# return lstm_layer | ||
|
||
# def compute_output_shape(self, input_shape): | ||
# return (None, self.max_sequence_length, self.cell.output_size) | ||
|
||
# def keras_phased_lstm_model(max_sequence_length=None, input_shape=None, lstm_units=50): | ||
# input = Input(shape=(max_sequence_length, input_shape)) | ||
# timeseries = Input(shape=(max_sequence_length, 1)) | ||
# # timestamps = Input(shape=(max_sequence_length, 1)) | ||
# # cell = tf.contrib.rnn.LSTMCell(num_units=lstm_units) | ||
# print(input) | ||
# # cell = tf.contrib.rnn.BasicLSTMCell(num_units=lstm_units, activation=tf.tanh) | ||
# # lstm_layer, state = tf.nn.dynamic_rnn(cell, inputs=input,dtype=tf.float32) | ||
# lstm_layer = MyLayer(50,max_sequence_length)(tf.concat([input, timeseries], axis=-1)) | ||
# dense = Dense(1, input_shape=(max_sequence_length, lstm_units))(lstm_layer) | ||
# print(dense.shape) | ||
# model = Model([input,timeseries], dense) | ||
# optimizer = optimizers.Adam() | ||
# model.compile(loss='mean_squared_error', optimizer=optimizer) | ||
# return model | ||
|
||
# def keras_lstm_model_1(max_sequence_length=None, input_shape=None, lstm_units=100, eps_reg=1e-2): | ||
# input = Input(shape=(max_sequence_length, input_shape)) | ||
# state_input = Input(shape=(lstm_units,max_sequence_length)) | ||
|
||
# print(state_input.shape) | ||
|
||
# cell = LSTM(units=lstm_units, | ||
# return_sequences=True, | ||
# return_state=True) | ||
# print(cell.cell.state_size) | ||
|
||
# lstm_layer = cell(input, initial_state = [state_input]) | ||
# dense = Dense(1, input_shape=(max_sequence_length, lstm_units), | ||
# kernel_initializer='normal', | ||
# kernel_regularizer=regularizers.l2(eps_reg), | ||
# activation=linear)(lstm_layer) | ||
|
||
# # print(lstm_layer.shape) | ||
# # print(dense.shape) | ||
# # print(input.shape)s | ||
# model = Model([input, state_input], [dense, state]) | ||
# optimizer = optimizers.Adam(1e-3, clipvalue=10.0) | ||
# model.compile(loss='mean_squared_error', optimizer=optimizer) | ||
# return model | ||
|
||
# def myloss(y_true, y_pred): | ||
# print('true' ,y_true.shape) | ||
# print('pr', y_pred.shape) | ||
# return mean_squared_error(y_pred, y_true) | ||
# def fake_loss(y_true,y_pred): | ||
# return mean_squared_error(0 * y_true,0 * y_pred) | ||
|
||
# def reccurent_model(input_shape, lstm_units=120, eps_reg=1e-2): | ||
# input = Input((None, input_shape)) | ||
# input_state1 = Input((lstm_units,)) | ||
# input_state2 = Input((lstm_units,)) | ||
|
||
# cell = LSTMCell(units=lstm_units, activation=tanh) | ||
|
||
# layer = RNN(cell, return_sequences=True, return_state=True, name='rnn') | ||
# print(layer.cell.state_size) | ||
|
||
# outputs, states1, states2 = layer(input, initial_state=(input_state1,input_state2)) | ||
# print(outputs.shape) | ||
# print(states1.shape) | ||
# print(states2.shape) | ||
# densed = Dense(1,input_shape=(None, lstm_units), | ||
# kernel_initializer='normal', | ||
# kernel_regularizer=regularizers.l2(eps_reg), | ||
# activation=linear)(outputs) | ||
|
||
# model = Model(inputs = [input, input_state1, input_state2], | ||
# outputs= densed) | ||
# optimizer = optimizers.Adam(1e-3, clipvalue=10.0) | ||
# model.compile(loss='mean_squared_error', optimizer=optimizer) | ||
# return model |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
#!/usr/bin/python | ||
|
||
from __future__ import print_function # for python 2 compatibility | ||
import hackathon_protocol | ||
import os | ||
import pandas as pd | ||
from feature_generator import count_all_features | ||
import numpy as np | ||
from keras.models import load_model | ||
import serg_model | ||
|
||
USERNAME = "Andrei_potishe_pliz" | ||
PASSWORD = "antoha322" | ||
|
||
CONNECT_IP = os.environ.get("HACKATHON_CONNECT_IP") or "127.0.0.1" | ||
CONNECT_PORT = int(os.environ.get("HACKATHON_CONNECT_PORT") or 12345) | ||
|
||
|
||
class MyClient(hackathon_protocol.Client): | ||
def __init__(self, sock): | ||
super(MyClient, self).__init__(sock) | ||
# print('on_init') | ||
self.counter = 0 | ||
self.target_instrument = 'TEA' | ||
self.send_login(USERNAME, PASSWORD) | ||
self.last_raw = None | ||
self.last_tea = None | ||
self.last_cofee = None | ||
self.buffer_main_tea = pd.DataFrame() | ||
self.buffer_with_features_tea = pd.DataFrame() | ||
self.buffer_main_coffee = pd.DataFrame() | ||
self.buffer_with_features_coffee = pd.DataFrame() | ||
|
||
self.h = np.array([np.zeros(200,dtype=np.float32)]) | ||
self.c = np.array([np.zeros(200,dtype=np.float32)]) | ||
|
||
# Load pre-trained model previously created by create_model.ipynb | ||
self.model = serg_model.reccurent_model(input_shape=80) | ||
# self.model = keras_ls .reccurent_model(input_shape=262) | ||
self.model.load_weights('weights.013-0.029.hdf5') | ||
|
||
print(self.model.summary()) | ||
|
||
self.win_size = 50 | ||
self.counter = 0 | ||
|
||
def on_header(self, csv_header): | ||
# print('onheader') | ||
self.header = {column_name: n for n, column_name in enumerate(csv_header)} | ||
self.columns = csv_header[2:] | ||
# print(self.columns) | ||
# print(len(self.columns)) | ||
# print(csv_header) | ||
# print("Header:", self.header) | ||
|
||
def on_orderbook(self, cvs_line_values): | ||
if cvs_line_values[0] == 'COFFEE': | ||
self.last_cofee = np.array(cvs_line_values[2:],dtype=np.float32) | ||
# cvs_line_values = cvs_line_values[2:] | ||
# self.buffer_main_coffee = self.buffer_main_coffee.append( | ||
# pd.DataFrame(np.array([np.array(cvs_line_values)]), columns=self.columns), ignore_index=True) | ||
|
||
# if self.buffer_main_coffee.shape[0] >= self.win_size: | ||
# # features = count_all_features(self.buffer_main_coffee.iloc[-self.win_size:]) | ||
# to_append = pd.DataFrame(np.concatenate([np.array(cvs_line_values), np.array([])])).T | ||
|
||
# self.buffer_with_features_coffee = self.buffer_with_features_coffee.append(to_append, ignore_index=True) | ||
# if self.buffer_with_features_coffee.shape[0] > self.win_size: | ||
# self.buffer_with_features_coffee = self.buffer_with_features_coffee.iloc[-self.win_size:] | ||
|
||
|
||
if cvs_line_values[0] == 'TEA': | ||
self.last_tea = np.array(cvs_line_values[2:],dtype=np.float32) | ||
# cvs_line_values = cvs_line_values[2:] | ||
# self.buffer_main_tea = self.buffer_main_tea.append( | ||
# pd.DataFrame(np.array([np.array(cvs_line_values)]), columns=self.columns), ignore_index=True) | ||
|
||
# # if self.buffer_main_tea.shape[0] >= self.win_size: | ||
# # features = count_all_features(self.buffer_main_tea.iloc[-self.win_size:]) | ||
# # to_append = pd.DataFrame(np.concatenate([np.array(cvs_line_values), features])).T | ||
# if self.buffer_main_tea.shape[0] >= self.win_size: | ||
# # features = count_all_features(self.buffer_main_tea.iloc[-self.win_size:]) | ||
# to_append = pd.DataFrame(np.concatenate([np.array(cvs_line_values), np.array([])])).T | ||
|
||
# self.buffer_with_features_tea = self.buffer_with_features_tea.append(to_append, ignore_index=True) | ||
# if self.buffer_with_features_tea.shape[0] > self.win_size: | ||
# self.buffer_with_features_tea = self.buffer_with_features_tea.iloc[-self.win_size:] | ||
|
||
def make_prediction(self): | ||
# print('make_prediction') | ||
# print('buffer shape', self.buffer_with_features_tea.shape) | ||
# input = np.concatenate([self.buffer_with_features_tea, self.buffer_with_features_coffee], axis=-1) | ||
input = np.concatenate([self.last_tea,self.last_cofee]) | ||
input = input.reshape((1,1,input.shape[0])) | ||
# print(input.shape) | ||
# print(self.state1.shape) | ||
# print(input.shape) | ||
prediction, self.h, self.c = self.model.predict([input,self.h, self.c]) | ||
|
||
# print('pred shape', prediction.shape) | ||
answer = prediction[0,:,0][-1] | ||
self.send_volatility(float(answer)) | ||
|
||
def on_score(self, items_processed, time_elapsed, score_value): | ||
print('on_score') | ||
print("Completed! items processed: %d, time elapsed: %.3f sec, score: %.6f" % ( | ||
items_processed, time_elapsed, score_value)) | ||
self.stop() | ||
|
||
def on_connected(sock): | ||
client = MyClient(sock) | ||
client.run() | ||
|
||
|
||
def main(): | ||
hackathon_protocol.tcp_connect(CONNECT_IP, CONNECT_PORT, on_connected) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
Oops, something went wrong.