Skip to content

airmcp-com/mcp-standards

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

27 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

MCP Standards - Self-Learning AI Standards System

Stop repeating yourself. MCP Standards learns from your corrections automatically and updates your AI configuration.

MIT License Python 3.10+ MCP 1.0


The Problem

You keep telling your AI assistant the same things:

  • "Use uv not pip"
  • "Use uv not pip"
  • "Use uv not pip"

What if it learned after the 3rd time?


The Solution

MCP Standards learns from your corrections automatically:

  1. You correct Claude 3 times: "use uv not pip"
  2. MCP Standards detects the pattern
  3. Preference promoted (80% confidence)
  4. CLAUDE.md updated automatically
  5. Claude never makes that mistake again

Before MCP Standards

You: "Use uv not pip"
Claude: *ignores, uses pip again*
You: "USE UV NOT PIP"
Claude: *ignores again*
You: "I TOLD YOU 10 TIMES, USE UV!!!"

After MCP Standards

You: "Use uv not pip" (correction #1)
You: "Use uv not pip" (correction #2)
You: "Use uv not pip" (correction #3)
MCP Standards: โœ… Pattern learned! Added to CLAUDE.md
Claude: *uses uv from now on, forever*

Features

โœจ Self-Learning (THE Killer Feature)

Automatic Pattern Detection:

  • Learns from corrections (3+ occurrences)
  • Detects workflow patterns
  • Promotes to preferences automatically
  • Updates CLAUDE.md without manual work

5 Types of Learning:

  1. Explicit corrections: "use X not Y"
  2. Implicit rejections: User edits within 2 minutes
  3. Rule violations: Compare vs config files
  4. Workflow patterns: Always run tests after code
  5. Tool preferences: Prefer certain tools for tasks

Confidence-Based Promotion:

  • 3 occurrences = 30% confidence (detected)
  • 5 occurrences = 70% confidence (high)
  • 10 occurrences = 90% confidence (very high)
  • 95%+ = auto-apply to CLAUDE.md

๐ŸŽฏ Automatic Standards Extraction

Reads your existing config files:

  • .editorconfig โ†’ Indentation, line endings
  • .prettierrc โ†’ Formatting, quotes
  • .eslintrc โ†’ Linting rules
  • pyproject.toml โ†’ Python config
  • package.json โ†’ JavaScript dependencies
  • Cargo.toml โ†’ Rust config

Auto-detects:

  • Project type (Python, JavaScript, Rust, Go, etc.)
  • Package manager (uv, npm, yarn, cargo, etc.)
  • Test framework (pytest, jest, vitest, etc.)
  • Build commands

Generates instruction files for:

  • Claude Desktop/Code (CLAUDE.md)
  • GitHub Copilot (.github/copilot-instructions.md)
  • Cursor (.cursor/rules/standards.mdc)

๐Ÿ”’ Production-Grade Security

Built with defense-in-depth:

  • โœ… Path whitelist - Only allowed directories
  • โœ… Input sanitization - No log injection
  • โœ… Rate limiting - 100 patterns/min max
  • โœ… Audit logging - Complete modification trail
  • โœ… 100% local - No cloud, no tracking

๐Ÿง  Persistent Memory

  • Local SQLite database with FTS5
  • Full-text search (<50ms on 1M+ episodes)
  • Export to markdown
  • Project-specific vs global preferences

Quick Start

Install

# 1. Clone repository
git clone https://github.com/airmcp-com/mcp-standards.git
cd mcp-standards

# 2. Install dependencies
uv sync

# 3. Configure Claude Desktop
# Add to ~/Library/Application Support/Claude/claude_desktop_config.json:
{
  "mcpServers": {
    "mcp-standards": {
      "command": "uv",
      "args": [
        "run",
        "--directory",
        "/ABSOLUTE/PATH/TO/mcp-standards",
        "python",
        "run_server.py"
      ]
    }
  }
}
# Replace /ABSOLUTE/PATH/TO/ with your actual path!
# Example: /Users/yourname/Projects/mcp-standards/run_server.py

# 4. Restart Claude Desktop - you're done!

Option B: From PyPI (Recommended)

# Install from PyPI
uv pip install mcp-standards

# Configure Claude Desktop
# Add to ~/Library/Application Support/Claude/claude_desktop_config.json:
{
  "mcpServers": {
    "mcp-standards": {
      "command": "mcp-standards",
      "args": []
    }
  }
}

# Restart Claude Desktop

๐Ÿš€ 60-Second Quickstart

Once Claude Desktop restarts, try this:

// 1. Store a preference right now
add_episode(
    name="My First Preference",
    content="I prefer using TypeScript over JavaScript for new projects",
    source="user"
)

// 2. Search for it
search_episodes(query="TypeScript", limit=5)

// 3. Generate AI standards from your current project
generate_ai_standards(project_path=".")

What just happened?

  • โœ… Your preference is stored in local SQLite database
  • โœ… Searchable in all future conversations
  • โœ… AI standards file generated from your project config

Next: Start correcting Claude when it makes mistakes. After 3 similar corrections, run:

get_learned_preferences(min_confidence=0.3)

You'll see MCP Standards has learned the pattern automatically!


Optional: Add Cost Optimization (99.5% Savings)

Want to save on AI costs? Add agentic-flow to route simple operations to cheaper models:

# Get free Gemini API key: https://aistudio.google.com/app/apikey

# Add to your claude_desktop_config.json (alongside mcp-standards):
{
  "mcpServers": {
    "mcp-standards": { ... },
    "agentic-flow": {
      "command": "npx",
      "args": ["-y", "agentic-flow", "mcp"],
      "env": {
        "GEMINI_API_KEY": "your_gemini_api_key_here",
        "DEFAULT_MODEL": "gemini-1.5-flash",
        "SHOW_MODEL_USAGE": "true",
        "SHOW_COST_SAVINGS": "true",
        "LOG_LEVEL": "info"
      }
    }
  }
}

What agentic-flow does:

  • Routes simple operations (memory, search) โ†’ Gemini Flash ($0.075/1M tokens)
  • Keeps complex operations (code gen) โ†’ Claude Sonnet ($15/1M tokens)
  • Shows which model was used for each operation
  • Displays cost savings in real-time
  • Saves ~$389/month on typical usage
  • 100% optional - MCP Standards works perfectly without it

๐Ÿ“– Quick Start Guide

MCP Standards has two complementary systems for building your AI assistant's knowledge:

System 1: Episodes (Manual Knowledge - Immediate)

Store facts, preferences, and instructions right now:

// โœ… Store a preference immediately
add_episode(
    name="Package Manager Preference",
    content="Always use uv instead of pip for Python. Example: uv pip install pytest",
    source="user"
)

// ๐Ÿ” Search your stored knowledge
search_episodes(query="package manager", limit=5)
// Returns: Your uv preference with full context

// ๐Ÿ“‹ List recent additions
list_recent(limit=10)
// Returns: Last 10 episodes you added

When to use Episodes:

  • โœ… Store a preference immediately
  • โœ… Document project-specific facts
  • โœ… Save code examples and snippets
  • โœ… Build a searchable knowledge base

System 2: Learned Preferences (Auto Pattern Detection - Over Time)

The system automatically learns from repeated corrections:

// ๐Ÿค– You DON'T call these - they happen automatically!
// Example: You correct Claude 3+ times: "Use uv instead of pip"
// โ†’ System detects pattern
// โ†’ Creates learned preference with confidence score

// ๐Ÿ“Š Check what patterns were detected automatically
get_learned_preferences(min_confidence=0.3)
// Returns: Preferences learned from corrections with confidence scores
// Example: { preference: "use uv over pip", confidence: 0.85, occurrences: 5 }

// ๐Ÿ’ก Get AI-suggested CLAUDE.md updates
suggest_claudemd_update(
    project_path="./my-project",
    min_confidence=0.7
)
// Returns: "Add rule: Use uv for package management (confidence: 0.85)"

// โœ๏ธ Apply learned patterns to your CLAUDE.md
update_claudemd(
    file_path="./CLAUDE.md",
    min_confidence=0.7
)
// Automatically updates CLAUDE.md with high-confidence learned patterns

Learned preferences build automatically when:

  • ๐Ÿ”„ You correct the same thing 3+ times
  • ๐Ÿ”„ Patterns emerge across different projects
  • ๐Ÿ”„ Confidence scores reach thresholds:
    • 0.3 = Emerging pattern (2-3 corrections)
    • 0.7 = Strong preference (5-7 corrections)
    • 0.9 = Very confident (10+ corrections)

๐ŸŽฏ Practical Example: Teaching Claude to Use uv

Scenario: You want Claude to always use uv instead of pip

Option A: Store Immediately (Recommended for new preferences)

add_episode(
    name="Python Package Manager",
    content="User prefers uv over pip. Always use: uv pip install <package>",
    source="user"
)

โœ… Available immediately in search โœ… Works in current session โœ… Manual but fast

Option B: Let System Learn (Automatic over time)

  1. Day 1: Correct Claude: "Use uv instead of pip" โ†’ Pattern #1 detected
  2. Day 3: Correct again on different project โ†’ Pattern #2 detected
  3. Day 7: Correct third time โ†’ Learned preference created (confidence: 0.3)
  4. Day 14: Fourth correction โ†’ Confidence increases to 0.7
  5. Run get_learned_preferences() โ†’ See the pattern
  6. Run suggest_claudemd_update() โ†’ Get suggestion to add to CLAUDE.md
  7. Run update_claudemd() โ†’ Automatically updates your config file

โœ… Builds confidence scores โœ… Suggests CLAUDE.md updates โœ… Automatic but slower

๐Ÿš€ Best Practice: Use Both!

  1. Store critical preferences immediately with add_episode()
  2. Let the system learn patterns over time from corrections
  3. Review learned preferences monthly with get_learned_preferences()
  4. Update CLAUDE.md when confidence scores are high (0.7+)

๐Ÿ”ง Generate Standards from Existing Project

// Auto-generate CLAUDE.md from existing config files
generate_ai_standards(project_path=".")
// Analyzes: .editorconfig, .prettierrc, eslint.config.js, pyproject.toml
// Generates: CLAUDE.md, .github/copilot-instructions.md, .cursor/rules/

How It Works

Pattern Learning Pipeline

User Correction โ†’ Pattern Extraction โ†’ Frequency Tracking โ†’ Confidence Scoring โ†’ Preference Promotion โ†’ CLAUDE.md Update

Example Flow:

  1. User says: "Actually, use uv not pip"
  2. Pattern extractor detects: "use uv instead of pip"
  3. Frequency tracker increments: occurrence #1
  4. Repeat 2 more times โ†’ occurrence #3
  5. Promotion engine creates preference (confidence 0.3)
  6. User approves โ†’ CLAUDE.md updated
  7. Future sessions โ†’ Claude sees preference in context

Database Schema

-- Pattern frequency (tracks occurrences)
CREATE TABLE pattern_frequency (
    pattern_key TEXT UNIQUE,
    occurrence_count INTEGER,
    confidence REAL,
    promoted_to_preference BOOLEAN
);

-- Tool preferences (learned rules)
CREATE TABLE tool_preferences (
    category TEXT,
    preference TEXT,
    confidence REAL,
    apply_count INTEGER,
    project_specific BOOLEAN
);

-- Audit log (security trail)
CREATE TABLE audit_log (
    action TEXT,
    target_path TEXT,
    details TEXT,
    success BOOLEAN,
    timestamp TIMESTAMP
);

What Makes MCP Standards Different?

Feature MCP Standards Tabnine Copilot Other MCPs
Learns from corrections โœ… Auto โŒ No โŒ No โŒ No
Updates CLAUDE.md โœ… Auto N/A N/A โŒ Manual
Pattern detection โœ… 5 types โŒ No โŒ No โŒ No
100% local โœ… Yes โŒ Cloud โŒ Cloud โœ… Varies
Open source โœ… MIT โŒ No โŒ No โœ… Varies
Security features โœ… 4 layers โš ๏ธ Basic โš ๏ธ Basic โš ๏ธ Varies

Unique Value Proposition: MCP Standards is the ONLY system that learns from your corrections and automatically updates your AI configuration.


Documentation

Guides

Technical


MCP Tools

Core Memory

  • add_episode(name, content) - Save knowledge
  • search_episodes(query, limit) - Full-text search
  • list_recent(limit) - Recent episodes

Pattern Learning

  • get_learned_preferences(category, min_confidence) - View learned patterns
  • suggest_claudemd_update(project_path) - Get suggestions
  • update_claudemd(file_path, min_confidence) - Apply updates

Standards Generation

  • generate_ai_standards(project_path, formats) - Auto-generate from config files
  • export_to_markdown(export_path) - Export knowledge base

Requirements

  • Python 3.10 or higher
  • Claude Desktop or Claude Code
  • MCP 1.0+

Supported Config Files

Formatting:

  • .editorconfig
  • .prettierrc / .prettierrc.json
  • .eslintrc / .eslintrc.json

Languages:

  • pyproject.toml (Python - Black, Ruff, Poetry, uv)
  • package.json (JavaScript/TypeScript)
  • Cargo.toml (Rust)
  • go.mod (Go)

More coming: Ruby, PHP, Java, C#


Cost Optimization (Optional)

By default, MCP Standards uses Claude Sonnet for all operations. You can optionally configure it to use 99.5% cheaper models for simple operations:

Setup Gemini Flash (Recommended)

  1. Get free API key: https://aistudio.google.com/app/apikey
  2. Add to your environment:
    export GEMINI_API_KEY="your_key_here"
    # Or add to ~/.bashrc or ~/.zshrc
  3. Automatic routing:
    • Simple operations (memory CRUD, searches) โ†’ Gemini 1.5 Flash ($0.075/1M tokens)
    • Complex operations (code generation, pattern analysis) โ†’ Claude Sonnet ($15/1M tokens)
    • 99.5% cost savings on routine operations

Powered by Agentic Flow

MCP Standards uses agentic-flow for intelligent model routing and cost optimization.

Features:

  • Automatic model selection based on task complexity
  • Support for 20+ AI providers (Anthropic, Google, OpenRouter, Groq, etc.)
  • Fallback chains for reliability
  • Token usage tracking

Learn more: agentic-flow documentation


Roadmap

โœ… v0.1.0 (October 2025 - Current)

  • Self-learning pattern detection
  • CLAUDE.md auto-generation
  • Config file parsing
  • Security enhancements (whitelist, sanitization, rate limiting, audit logs)
  • 100% local with SQLite + FTS5

๐Ÿ”„ v0.2.0 (Q1 2026)

  • Implicit rejection detection (user edits within 2 min)
  • Rule violation detection (compare vs config files)
  • Workflow pattern learning (test after code changes)
  • Cross-project promotion (project โ†’ global)
  • MCP notifications for pattern promotions

๐Ÿ”ฎ v0.3.0 (Q2 2026)

  • Team sync (share learned preferences)
  • Analytics dashboard (trends, common corrections)
  • Cloud backup (optional)
  • Multi-project management
  • Priority support

Contributing

We welcome contributions! See CONTRIBUTING.md for:

  • How to report bugs
  • How to request features
  • Development setup
  • Code standards

License

MIT License - see LICENSE for details


Support


Built With

  • Python 3.10+
  • SQLite with FTS5 (full-text search)
  • MCP (Model Context Protocol)
  • uv (fast Python package manager)

Acknowledgments

  • Anthropic for Claude and MCP
  • agentic-flow for intelligent model routing and cost optimization
  • The open source community
  • Everyone who tested early versions

Made with โค๏ธ by Matt Strautmann

Stop repeating yourself. Start using MCP Standards.

โญ Star us on GitHub if this helps you!