Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add image_prompts #2

Merged
merged 10 commits into from
Nov 2, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
253 changes: 253 additions & 0 deletions jupyters/ruDALLE-image-prompts-A100.ipynb

Large diffs are not rendered by default.

5 changes: 3 additions & 2 deletions rudalle/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
from .tokenizer import get_tokenizer
from .realesrgan import get_realesrgan
from .ruclip import get_ruclip
from . import vae, dalle, tokenizer, realesrgan, pipelines, ruclip
from . import vae, dalle, tokenizer, realesrgan, pipelines, ruclip, image_prompts


__all__ = [
Expand All @@ -19,6 +19,7 @@
'tokenizer',
'realesrgan',
'pipelines',
'image_prompts',
]

__version__ = '0.0.1-rc1'
__version__ = '0.0.1-rc2'
53 changes: 53 additions & 0 deletions rudalle/image_prompts.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
# -*- coding: utf-8 -*-
import torch
import numpy as np


class ImagePrompts:

def __init__(self, pil_image, borders, vae, device='cpu', crop_first=False):
"""
Args:
pil_image (PIL.Image): image in PIL format
borders (dict[str] | int): borders that we croped from pil_image
example: {'up': 4, 'right': 0, 'left': 0, 'down': 0} (1 int eq 8 pixels)
vae (VQGanGumbelVAE): VQGAN model for image encoding
device (str): cpu or cuda
crop_first (bool): if True, croped image before VQGAN encoding
"""
self.device = device
shonenkov marked this conversation as resolved.
Show resolved Hide resolved
img = self._preprocess_img(pil_image)
self.image_prompts_idx, self.image_prompts = self._get_image_prompts(img, borders, vae, crop_first)

def _preprocess_img(self, pil_img):
img = torch.tensor(np.array(pil_img.convert('RGB')).transpose(2, 0, 1)) / 255.
img = img.unsqueeze(0).to(self.device, dtype=torch.float32)
img = (2 * img) - 1
return img

@staticmethod
def _get_image_prompts(img, borders, vae, crop_first):
if crop_first:
assert borders['right'] + borders['left'] + borders['down'] == 0
up_border = borders['up'] * 8
_, _, [_, _, vqg_img] = vae.model.encode(img[:, :, :up_border, :])
else:
_, _, [_, _, vqg_img] = vae.model.encode(img)

bs, vqg_img_w, vqg_img_h = vqg_img.shape
mask = torch.zeros(vqg_img_w, vqg_img_h)
if borders['up'] != 0:
mask[:borders['up'], :] = 1.
if borders['down'] != 0:
mask[-borders['down']:, :] = 1.
if borders['right'] != 0:
mask[:, :borders['right']] = 1.
if borders['left'] != 0:
mask[:, -borders['left']:] = 1.
mask = mask.reshape(-1).bool()

image_prompts = vqg_img.reshape((bs, -1))
image_prompts_idx = np.arange(vqg_img_w * vqg_img_h)
image_prompts_idx = set(image_prompts_idx[mask])

return image_prompts_idx, image_prompts
34 changes: 22 additions & 12 deletions rudalle/pipelines.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,8 +10,8 @@
from . import utils


def generate_images(text, tokenizer, dalle, vae, top_k, top_p, images_num, temperature=1.0, bs=8, seed=None,
use_cache=True):
def generate_images(text, tokenizer, dalle, vae, top_k, top_p, images_num, image_prompts=None, temperature=1.0, bs=8,
seed=None, use_cache=True):
# TODO docstring
if seed is not None:
utils.seed_everything(seed)
Expand All @@ -32,16 +32,26 @@ def generate_images(text, tokenizer, dalle, vae, top_k, top_p, images_num, tempe
out = input_ids.unsqueeze(0).repeat(chunk_bs, 1).to(device)
has_cache = False
sample_scores = []
for _ in tqdm(range(out.shape[1], total_seq_length)):
logits, has_cache = dalle(out, attention_mask,
has_cache=has_cache, use_cache=use_cache, return_loss=False)
logits = logits[:, -1, vocab_size:]
logits /= temperature
filtered_logits = transformers.top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
probs = torch.nn.functional.softmax(filtered_logits, dim=-1)
sample = torch.multinomial(probs, 1)
sample_scores.append(probs[torch.arange(probs.size(0)), sample.transpose(0, 1)])
out = torch.cat((out, sample), dim=-1)
if image_prompts is not None:
shonenkov marked this conversation as resolved.
Show resolved Hide resolved
prompts_idx, prompts = image_prompts.image_prompts_idx, image_prompts.image_prompts
prompts = prompts.repeat(images_num, 1)
if use_cache:
use_cache = False
print('Warning: use_cache changed to False')
for idx in tqdm(range(out.shape[1], total_seq_length)):
idx -= text_seq_length
if image_prompts is not None and idx in prompts_idx:
out = torch.cat((out, prompts[:, idx].unsqueeze(1)), dim=-1)
else:
logits, has_cache = dalle(out, attention_mask,
has_cache=has_cache, use_cache=use_cache, return_loss=False)
logits = logits[:, -1, vocab_size:]
logits /= temperature
filtered_logits = transformers.top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
probs = torch.nn.functional.softmax(filtered_logits, dim=-1)
sample = torch.multinomial(probs, 1)
sample_scores.append(probs[torch.arange(probs.size(0)), sample.transpose(0, 1)])
out = torch.cat((out, sample), dim=-1)
codebooks = out[:, -image_seq_length:]
images = vae.decode(codebooks)
pil_images += utils.torch_tensors_to_pil_list(images)
Expand Down
22 changes: 22 additions & 0 deletions tests/test_image_prompts.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
# -*- coding: utf-8 -*-
import pytest

from rudalle.image_prompts import ImagePrompts


@pytest.mark.parametrize('borders, crop_first', [
({'up': 4, 'right': 0, 'left': 0, 'down': 0}, False),
({'up': 4, 'right': 0, 'left': 0, 'down': 0}, True),
({'up': 4, 'right': 3, 'left': 3, 'down': 3}, False)
])
def test_image_prompts(sample_image, vae, borders, crop_first):
img = sample_image.copy()
img = img.resize((256, 256))
image_prompt = ImagePrompts(img, borders, vae, crop_first=crop_first)
if crop_first:
assert image_prompt.image_prompts.shape[1] == borders['up'] * 32
assert len(image_prompt.image_prompts_idx) == borders['up'] * 32
else:
assert image_prompt.image_prompts.shape[1] == 32 * 32
assert len(image_prompt.image_prompts_idx) == (borders['up'] + borders['down']) * 32 \
+ (borders['left'] + borders['right']) * (32 - borders['up'] - borders['down'])