Skip to content

AIPerf is a comprehensive benchmarking tool that measures the performance of generative AI models served by your preferred inference solution.

License

Notifications You must be signed in to change notification settings

ai-dynamo/aiperf

AIPerf

PyPI version License Codecov Discord Ask DeepWiki

Architecture| Design Proposals | Migrating from Genai-Perf | CLI Options

AIPerf is a comprehensive benchmarking tool that measures the performance of generative AI models served by your preferred inference solution. It provides detailed metrics using a command line display as well as extensive benchmark performance reports.

AIPerf provides multiprocess support out of the box for a single scalable solution.

Features

  • Scalable via multiprocess support
  • Modular design for easy user modification
  • Several benchmarking modes:
    • concurrency
    • request-rate
    • request-rate with a maximum concurrency
    • trace replay
  • Public dataset support

Tutorials & Advanced Features

Getting Started

  • Basic Tutorial - Learn the fundamentals with Dynamo and vLLM examples

Advanced Benchmarking Features

Feature Description Use Cases
Request Cancellation Test timeout behavior and service resilience SLA validation, cancellation modeling
Trace Benchmarking Deterministic workload replay with custom datasets Regression testing, A/B testing
Fixed Schedule Precise timestamp-based request execution Traffic replay, temporal analysis, burst testing
Time-based Benchmarking Duration-based testing with grace period control Stability testing, sustained performance
Sequence Distributions Mixed ISL/OSL pairings Benchmarking mixed use cases
Goodput Throughput of requests meeting user-defined SLOs SLO validation, capacity planning, runtime/model comparisons

Working with Benchmark Data

  • Profile Exports - Parse and analyze profile_export.jsonl with Pydantic models, custom metrics, and async processing

Quick Navigation

# Basic profiling
aiperf profile --model Qwen/Qwen3-0.6B --url localhost:8000 --endpoint-type chat

# Request timeout testing
aiperf profile --request-timeout-seconds 30.0 [other options...]

# Trace-based benchmarking
aiperf profile --input-file trace.jsonl --custom-dataset-type single_turn [other options...]

# Fixed schedule execution
aiperf profile --input-file schedule.jsonl --fixed-schedule --fixed-schedule-auto-offset [other options...]

# Time-based benchmarking
aiperf profile --benchmark-duration 300.0 --benchmark-grace-period 30.0 [other options...]

Supported APIs

  • OpenAI chat completions
  • OpenAI completions
  • OpenAI embeddings
  • OpenAI audio: request throughput and latency
  • OpenAI images: request throughput and latency
  • NIM rankings

Installation

pip install aiperf

Quick Start

Basic Usage

Run a simple benchmark against a model:

aiperf profile \
  --model your_model_name \
  --url http://localhost:8000 \
  --endpoint-type chat \
  --streaming

Example with Custom Configuration

aiperf profile \
  --model Qwen/Qwen3-0.6B \
  --url http://localhost:8000 \
  --endpoint-type chat \
  --concurrency 10 \
  --request-count 100 \
  --streaming

Example output:

NVIDIA AIPerf | LLM Metrics
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━━┳━━━━━━━━┳━━━━━━━━┳━━━━━━━━┳━━━━━━━┓
┃                               Metric ┃       avg ┃    min ┃    max ┃    p99 ┃    p90 ┃    p75 ┃   std ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━━╇━━━━━━━━╇━━━━━━━━╇━━━━━━━━╇━━━━━━━┩
│             Time to First Token (ms) │     18.26 │  11.22 │ 106.32 │  68.82 │  27.76 │  16.62 │ 12.07 │
│            Time to Second Token (ms) │     11.40 │   0.02 │  85.91 │  34.54 │  12.59 │  11.65 │  7.01 │
│                 Request Latency (ms) │    487.30 │ 267.07 │ 769.57 │ 715.99 │ 580.83 │ 536.17 │ 79.60 │
│             Inter Token Latency (ms) │     11.23 │   8.80 │  13.17 │  12.48 │  11.73 │  11.37 │  0.45 │
│     Output Token Throughput Per User │     89.23 │  75.93 │ 113.60 │ 102.28 │  90.91 │  90.29 │  3.70 │
│                    (tokens/sec/user) │           │        │        │        │        │        │       │
│      Output Sequence Length (tokens) │     42.83 │  24.00 │  65.00 │  64.00 │  52.00 │  47.00 │  7.21 │
│       Input Sequence Length (tokens) │     10.00 │  10.00 │  10.00 │  10.00 │  10.00 │  10.00 │  0.00 │
│ Output Token Throughput (tokens/sec) │ 10,944.03 │    N/A │    N/A │    N/A │    N/A │    N/A │   N/A │
│    Request Throughput (requests/sec) │    255.54 │    N/A │    N/A │    N/A │    N/A │    N/A │   N/A │
│             Request Count (requests) │    711.00 │    N/A │    N/A │    N/A │    N/A │    N/A │   N/A │
└──────────────────────────────────────┴───────────┴────────┴────────┴────────┴────────┴────────┴───────┘

Known Issues

  • Output sequence length constraints (--output-tokens-mean) cannot be guaranteed unless you pass ignore_eos and/or min_tokens via --extra-inputs to an inference server that supports them.
  • Very high concurrency settings (typically >15,000 concurrency) may lead to port exhaustion on some systems, causing connection failures during benchmarking. If encountered, consider adjusting system limits or reducing concurrency.
  • Startup errors caused by invalid configuration settings can cause AIPerf to hang indefinitely. If AIPerf appears to freeze during initialization, terminate the process and check configuration settings.
  • Dashboard UI may cause corrupted ANSI sequences on macOS or certain terminal environments, making the terminal unusable. Run reset command to restore normal terminal functionality, or switch to --ui simple for a lightweight progress bar interface.

About

AIPerf is a comprehensive benchmarking tool that measures the performance of generative AI models served by your preferred inference solution.

Resources

License

Contributing

Security policy

Stars

Watchers

Forks

Packages

No packages published

Languages