Skip to content

Commit

Permalink
RoPE updates (rasbt#412)
Browse files Browse the repository at this point in the history
* RoPE updates

* Apply suggestions from code review

* updates

* updates

* updates
  • Loading branch information
rasbt authored Oct 23, 2024
1 parent 4f9c9fb commit 7cd6a67
Show file tree
Hide file tree
Showing 6 changed files with 202 additions and 13 deletions.
8 changes: 4 additions & 4 deletions ch05/07_gpt_to_llama/converting-gpt-to-llama2.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -426,7 +426,7 @@
" assert head_dim % 2 == 0, \"Embedding dimension must be even\"\n",
"\n",
" # Compute the inverse frequencies\n",
" inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim // 2) / (head_dim // 2)))\n",
" inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim, 2)[: (head_dim // 2)].float() / head_dim))\n",
"\n",
" # Generate position indices\n",
" positions = torch.arange(context_length)\n",
Expand Down Expand Up @@ -493,8 +493,8 @@
"\n",
"# Dummy query and key tensors\n",
"torch.manual_seed(123)\n",
"queries = torch.randn(batch_size, context_len, num_heads, head_dim)\n",
"keys = torch.randn(batch_size, context_len, num_heads, head_dim)\n",
"queries = torch.randn(batch_size, num_heads, context_len, head_dim)\n",
"keys = torch.randn(batch_size, num_heads, context_len, head_dim)\n",
"\n",
"# Apply rotary position embeddings\n",
"queries_rot = compute_rope(queries, cos, sin)\n",
Expand Down Expand Up @@ -1691,7 +1691,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.10.6"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
Expand Down
8 changes: 4 additions & 4 deletions ch05/07_gpt_to_llama/converting-llama2-to-llama3.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -278,7 +278,7 @@
" assert head_dim % 2 == 0, \"Embedding dimension must be even\"\n",
"\n",
" # Compute the inverse frequencies\n",
" inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim // 2) / (head_dim // 2)))\n",
" inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim, 2)[: (head_dim // 2)].float() / head_dim))\n",
"\n",
" ################################ NEW ###############################################\n",
" # Frequency adjustments\n",
Expand Down Expand Up @@ -383,8 +383,8 @@
"\n",
"# Dummy query and key tensors\n",
"torch.manual_seed(123)\n",
"queries = torch.randn(batch_size, llama_3_context_len, num_heads, head_dim)\n",
"keys = torch.randn(batch_size, llama_3_context_len, num_heads, head_dim)\n",
"queries = torch.randn(batch_size, num_heads, llama_3_context_len, head_dim)\n",
"keys = torch.randn(batch_size, num_heads, llama_3_context_len, head_dim)\n",
"\n",
"# Apply rotary position embeddings\n",
"queries_rot = compute_rope(queries, cos, sin)\n",
Expand Down Expand Up @@ -2701,7 +2701,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.10.6"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
Expand Down
4 changes: 2 additions & 2 deletions ch05/07_gpt_to_llama/standalone-llama32.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -133,7 +133,7 @@
" assert head_dim % 2 == 0, \"Embedding dimension must be even\"\n",
"\n",
" # Compute the inverse frequencies\n",
" inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim // 2) / (head_dim // 2)))\n",
" inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim, 2)[: (head_dim // 2)].float() / head_dim))\n",
"\n",
" # Frequency adjustments\n",
" if freq_config is not None:\n",
Expand Down Expand Up @@ -1061,7 +1061,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.10.6"
}
},
"nbformat": 4,
Expand Down
74 changes: 74 additions & 0 deletions ch05/07_gpt_to_llama/tests/Untitled.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 9,
"id": "40d2405d-ee10-44ad-b20e-cf32078f926a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"True | head dim: 1, tensor([]), tensor([])\n",
"True | head dim: 2, tensor([1.]), tensor([1.])\n",
"True | head dim: 3, tensor([1.]), tensor([1.])\n",
"True | head dim: 4, tensor([1.0000, 0.0100]), tensor([1.0000, 0.0100])\n",
"False | head dim: 5, tensor([1.0000, 0.0100]), tensor([1.0000, 0.0251])\n",
"True | head dim: 6, tensor([1.0000, 0.0464, 0.0022]), tensor([1.0000, 0.0464, 0.0022])\n",
"False | head dim: 7, tensor([1.0000, 0.0464, 0.0022]), tensor([1.0000, 0.0720, 0.0052])\n",
"True | head dim: 8, tensor([1.0000, 0.1000, 0.0100, 0.0010]), tensor([1.0000, 0.1000, 0.0100, 0.0010])\n",
"False | head dim: 9, tensor([1.0000, 0.1000, 0.0100, 0.0010]), tensor([1.0000, 0.1292, 0.0167, 0.0022])\n",
"True | head dim: 10, tensor([1.0000e+00, 1.5849e-01, 2.5119e-02, 3.9811e-03, 6.3096e-04]), tensor([1.0000e+00, 1.5849e-01, 2.5119e-02, 3.9811e-03, 6.3096e-04])\n",
"False | head dim: 11, tensor([1.0000e+00, 1.5849e-01, 2.5119e-02, 3.9811e-03, 6.3096e-04]), tensor([1.0000, 0.1874, 0.0351, 0.0066, 0.0012])\n"
]
}
],
"source": [
"import torch\n",
"\n",
"theta_base = 10_000\n",
"\n",
"for head_dim in range(1, 12):\n",
"\n",
" before = 1.0 / (theta_base ** (torch.arange(0, head_dim // 2) / (head_dim // 2)))\n",
" after = 1.0 / (theta_base ** (torch.arange(0, head_dim, 2)[: (head_dim // 2)].float() / head_dim))\n",
" \n",
" s = f\"{torch.equal(before, after)} | head dim: {head_dim}, {before}, {after}\"\n",
" print(s)\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0abfbf38-93a4-4994-8e7e-a543477268a8",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
3 changes: 2 additions & 1 deletion ch05/07_gpt_to_llama/tests/test-requirements-extra.txt
Original file line number Diff line number Diff line change
@@ -1 +1,2 @@
transformers>=4.44.2
transformers>=4.44.2
litgpt>=0.5.0
118 changes: 116 additions & 2 deletions ch05/07_gpt_to_llama/tests/tests.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,11 +10,82 @@
import sys
import types
import nbformat
from typing import Optional, Tuple
import torch
import pytest
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding, apply_rotary_pos_emb


# LitGPT code from https://github.com/Lightning-AI/litgpt/blob/main/litgpt/model.py
# LitGPT is licensed under Apache v2: https://github.com/Lightning-AI/litgpt/blob/main/LICENSE
def litgpt_build_rope_cache(
seq_len: int,
n_elem: int,
device: Optional[torch.device] = None,
base: int = 10000,
condense_ratio: int = 1,
extra_config: Optional[dict] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Enhanced Transformer with Rotary Position Embedding.
Args:
seq_len (int): Sequence length.
n_elem (int): Number of elements (head dimension).
device (torch.device, optional): Device for tensor allocations.
base (int, optional): Base for computing inverse frequencies.
condense_ratio (int, optional): Ratio to condense the position indices.
extra_config (dict, optional): Configuration parameters for frequency adjustments (used by Llama 3.1 and 3.2)
Returns:
Tuple[torch.Tensor, torch.Tensor]: Cosine and sine caches for RoPE.
"""

# Compute the inverse frequencies theta
theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, device=device).float() / n_elem))

if extra_config is not None:
orig_context_len = extra_config["original_max_seq_len"]
factor = extra_config["factor"]
low_freq_factor = extra_config["low_freq_factor"]
high_freq_factor = extra_config["high_freq_factor"]

wavelen = 2 * torch.pi / theta
ratio = orig_context_len / wavelen
smooth_factor = (ratio - low_freq_factor) / (high_freq_factor - low_freq_factor)
smooth_factor = torch.clamp(smooth_factor, min=0.0, max=1.0)

# Compute adjusted_theta without masked indexing
adjusted_theta = (1 - smooth_factor) * (theta / factor) + smooth_factor * theta
theta = adjusted_theta

# Create position indices `[0, 1, ..., seq_len - 1]`
seq_idx = torch.arange(seq_len, device=device) / condense_ratio

# Calculate the product of position index and $\theta_i$
idx_theta = torch.outer(seq_idx, theta).repeat(1, 2)

return torch.cos(idx_theta), torch.sin(idx_theta)


# LitGPT code from https://github.com/Lightning-AI/litgpt/blob/main/litgpt/model.py
# LitGPT is licensed under Apache v2: https://github.com/Lightning-AI/litgpt/blob/main/LICENSE
def litgpt_apply_rope(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
head_size = x.size(-1)
x1 = x[..., : head_size // 2] # (B, nh, T, hs/2)
x2 = x[..., head_size // 2:] # (B, nh, T, hs/2)
rotated = torch.cat((-x2, x1), dim=-1) # (B, nh, T, hs)
if cos.dim() > 1:
# batch dimensions must align
# sin/cos are (B, T, hs) so we unsqeeze -3 for nh
# we count from back because all of apply_rope does
cos = cos.unsqueeze(-3)
sin = sin.unsqueeze(-3)

roped = (x * cos) + (rotated * sin)
return roped.to(dtype=x.dtype)


@pytest.fixture(scope="module")
def notebook():
def import_definitions_from_notebook(notebooks):
Expand Down Expand Up @@ -84,21 +155,30 @@ def test_rope_llama2(notebook):
queries_rot = this_nb.compute_rope(queries, cos, sin)
keys_rot = this_nb.compute_rope(keys, cos, sin)

# Generate reference RoPE via HF
rot_emb = LlamaRotaryEmbedding(
dim=head_dim,
max_position_embeddings=context_len,
base=10_000
)

position_ids = torch.arange(context_len, dtype=torch.long).unsqueeze(0)
ref_cos, ref_sin = rot_emb(queries, position_ids)
ref_queries_rot, ref_keys_rot = apply_rotary_pos_emb(queries, keys, ref_cos, ref_sin)

torch.testing.assert_close(sin, ref_sin.squeeze(0))
torch.testing.assert_close(cos, ref_cos.squeeze(0))
torch.testing.assert_close(keys_rot, ref_keys_rot)
torch.testing.assert_close(queries_rot, ref_queries_rot)

# Generate reference RoPE via LitGPT
litgpt_cos, litgpt_sin = litgpt_build_rope_cache(context_len, n_elem=head_dim, base=10_000)
litgpt_queries_rot = litgpt_apply_rope(queries, litgpt_cos, litgpt_sin)
litgpt_keys_rot = litgpt_apply_rope(keys, litgpt_cos, litgpt_sin)

torch.testing.assert_close(sin, litgpt_sin)
torch.testing.assert_close(cos, litgpt_cos)
torch.testing.assert_close(keys_rot, litgpt_keys_rot)
torch.testing.assert_close(queries_rot, litgpt_queries_rot)


def test_rope_llama3(notebook):

Expand Down Expand Up @@ -128,6 +208,7 @@ def test_rope_llama3(notebook):
queries_rot = nb1.compute_rope(queries, cos, sin)
keys_rot = nb1.compute_rope(keys, cos, sin)

# Generate reference RoPE via HF
rot_emb = LlamaRotaryEmbedding(
dim=head_dim,
max_position_embeddings=context_len,
Expand All @@ -143,6 +224,16 @@ def test_rope_llama3(notebook):
torch.testing.assert_close(keys_rot, ref_keys_rot)
torch.testing.assert_close(queries_rot, ref_queries_rot)

# Generate reference RoPE via LitGPT
litgpt_cos, litgpt_sin = litgpt_build_rope_cache(context_len, n_elem=head_dim, base=theta_base)
litgpt_queries_rot = litgpt_apply_rope(queries, litgpt_cos, litgpt_sin)
litgpt_keys_rot = litgpt_apply_rope(keys, litgpt_cos, litgpt_sin)

torch.testing.assert_close(sin, litgpt_sin)
torch.testing.assert_close(cos, litgpt_cos)
torch.testing.assert_close(keys_rot, litgpt_keys_rot)
torch.testing.assert_close(queries_rot, litgpt_queries_rot)


def test_rope_llama3_12(notebook):

Expand Down Expand Up @@ -180,6 +271,7 @@ def test_rope_llama3_12(notebook):
queries_rot = nb1.compute_rope(queries, cos, sin)
keys_rot = nb1.compute_rope(keys, cos, sin)

# Generate reference RoPE via HF
hf_rope_params = {
"factor": 8.0,
"low_freq_factor": 1.0,
Expand Down Expand Up @@ -210,6 +302,28 @@ class RoPEConfig:
torch.testing.assert_close(keys_rot, ref_keys_rot)
torch.testing.assert_close(queries_rot, ref_queries_rot)

# Generate reference RoPE via LitGPT
litgpt_rope_config = {
"factor": 8.0,
"low_freq_factor": 1.0,
"high_freq_factor": 4.0,
"original_max_seq_len": 8192
}

litgpt_cos, litgpt_sin = litgpt_build_rope_cache(
context_len,
n_elem=head_dim,
base=rope_theta,
extra_config=litgpt_rope_config
)
litgpt_queries_rot = litgpt_apply_rope(queries, litgpt_cos, litgpt_sin)
litgpt_keys_rot = litgpt_apply_rope(keys, litgpt_cos, litgpt_sin)

torch.testing.assert_close(sin, litgpt_sin)
torch.testing.assert_close(cos, litgpt_cos)
torch.testing.assert_close(keys_rot, litgpt_keys_rot)
torch.testing.assert_close(queries_rot, litgpt_queries_rot)


def test_silu(notebook):
example_batch = torch.randn(2, 3, 4)
Expand Down

0 comments on commit 7cd6a67

Please sign in to comment.