-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
24 changed files
with
912 additions
and
169 deletions.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
model_checkpoint_path: "cps/model.ckpt" | ||
all_model_checkpoint_paths: "cps/model.ckpt" |
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,144 @@ | ||
"""Functions for downloading and reading MNIST data.""" | ||
from __future__ import print_function | ||
import gzip | ||
import os | ||
import urllib | ||
import numpy | ||
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/' | ||
def maybe_download(filename, work_directory): | ||
"""Download the data from Yann's website, unless it's already here.""" | ||
if not os.path.exists(work_directory): | ||
os.mkdir(work_directory) | ||
filepath = os.path.join(work_directory, filename) | ||
if not os.path.exists(filepath): | ||
filepath, _ = urllib.urlretrieve(SOURCE_URL + filename, filepath) | ||
statinfo = os.stat(filepath) | ||
print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.') | ||
return filepath | ||
def _read32(bytestream): | ||
dt = numpy.dtype(numpy.uint32).newbyteorder('>') | ||
return numpy.frombuffer(bytestream.read(4), dtype=dt) | ||
def extract_images(filename): | ||
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth].""" | ||
print('Extracting', filename) | ||
with gzip.open(filename) as bytestream: | ||
magic = _read32(bytestream) | ||
if magic != 2051: | ||
raise ValueError( | ||
'Invalid magic number %d in MNIST image file: %s' % | ||
(magic, filename)) | ||
num_images = _read32(bytestream) | ||
rows = _read32(bytestream) | ||
cols = _read32(bytestream) | ||
buf = bytestream.read(rows * cols * num_images) | ||
data = numpy.frombuffer(buf, dtype=numpy.uint8) | ||
data = data.reshape(num_images, rows, cols, 1) | ||
return data | ||
def dense_to_one_hot(labels_dense, num_classes=10): | ||
"""Convert class labels from scalars to one-hot vectors.""" | ||
num_labels = labels_dense.shape[0] | ||
index_offset = numpy.arange(num_labels) * num_classes | ||
labels_one_hot = numpy.zeros((num_labels, num_classes)) | ||
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 | ||
return labels_one_hot | ||
def extract_labels(filename, one_hot=False): | ||
"""Extract the labels into a 1D uint8 numpy array [index].""" | ||
print('Extracting', filename) | ||
with gzip.open(filename) as bytestream: | ||
magic = _read32(bytestream) | ||
if magic != 2049: | ||
raise ValueError( | ||
'Invalid magic number %d in MNIST label file: %s' % | ||
(magic, filename)) | ||
num_items = _read32(bytestream) | ||
buf = bytestream.read(num_items) | ||
labels = numpy.frombuffer(buf, dtype=numpy.uint8) | ||
if one_hot: | ||
return dense_to_one_hot(labels) | ||
return labels | ||
class DataSet(object): | ||
def __init__(self, images, labels, fake_data=False): | ||
if fake_data: | ||
self._num_examples = 10000 | ||
else: | ||
assert images.shape[0] == labels.shape[0], ( | ||
"images.shape: %s labels.shape: %s" % (images.shape, | ||
labels.shape)) | ||
self._num_examples = images.shape[0] | ||
# Convert shape from [num examples, rows, columns, depth] | ||
# to [num examples, rows*columns] (assuming depth == 1) | ||
assert images.shape[3] == 1 | ||
images = images.reshape(images.shape[0], | ||
images.shape[1] * images.shape[2]) | ||
# Convert from [0, 255] -> [0.0, 1.0]. | ||
images = images.astype(numpy.float32) | ||
images = numpy.multiply(images, 1.0 / 255.0) | ||
self._images = images | ||
self._labels = labels | ||
self._epochs_completed = 0 | ||
self._index_in_epoch = 0 | ||
@property | ||
def images(self): | ||
return self._images | ||
@property | ||
def labels(self): | ||
return self._labels | ||
@property | ||
def num_examples(self): | ||
return self._num_examples | ||
@property | ||
def epochs_completed(self): | ||
return self._epochs_completed | ||
def next_batch(self, batch_size, fake_data=False): | ||
"""Return the next `batch_size` examples from this data set.""" | ||
if fake_data: | ||
fake_image = [1.0 for _ in xrange(784)] | ||
fake_label = 0 | ||
return [fake_image for _ in xrange(batch_size)], [ | ||
fake_label for _ in xrange(batch_size)] | ||
start = self._index_in_epoch | ||
self._index_in_epoch += batch_size | ||
if self._index_in_epoch > self._num_examples: | ||
# Finished epoch | ||
self._epochs_completed += 1 | ||
# Shuffle the data | ||
perm = numpy.arange(self._num_examples) | ||
numpy.random.shuffle(perm) | ||
self._images = self._images[perm] | ||
self._labels = self._labels[perm] | ||
# Start next epoch | ||
start = 0 | ||
self._index_in_epoch = batch_size | ||
assert batch_size <= self._num_examples | ||
end = self._index_in_epoch | ||
return self._images[start:end], self._labels[start:end] | ||
def read_data_sets(train_dir, fake_data=False, one_hot=False): | ||
class DataSets(object): | ||
pass | ||
data_sets = DataSets() | ||
if fake_data: | ||
data_sets.train = DataSet([], [], fake_data=True) | ||
data_sets.validation = DataSet([], [], fake_data=True) | ||
data_sets.test = DataSet([], [], fake_data=True) | ||
return data_sets | ||
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz' | ||
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz' | ||
TEST_IMAGES = 't10k-images-idx3-ubyte.gz' | ||
TEST_LABELS = 't10k-labels-idx1-ubyte.gz' | ||
VALIDATION_SIZE = 5000 | ||
local_file = maybe_download(TRAIN_IMAGES, train_dir) | ||
train_images = extract_images(local_file) | ||
local_file = maybe_download(TRAIN_LABELS, train_dir) | ||
train_labels = extract_labels(local_file, one_hot=one_hot) | ||
local_file = maybe_download(TEST_IMAGES, train_dir) | ||
test_images = extract_images(local_file) | ||
local_file = maybe_download(TEST_LABELS, train_dir) | ||
test_labels = extract_labels(local_file, one_hot=one_hot) | ||
validation_images = train_images[:VALIDATION_SIZE] | ||
validation_labels = train_labels[:VALIDATION_SIZE] | ||
train_images = train_images[VALIDATION_SIZE:] | ||
train_labels = train_labels[VALIDATION_SIZE:] | ||
data_sets.train = DataSet(train_images, train_labels) | ||
data_sets.validation = DataSet(validation_images, validation_labels) | ||
data_sets.test = DataSet(test_images, test_labels) | ||
return data_sets |
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,177 @@ | ||
import tensorflow as tf | ||
import input_data | ||
import cv2 | ||
import numpy as np | ||
import math | ||
from scipy import ndimage | ||
|
||
|
||
def getBestShift(img): | ||
cy,cx = ndimage.measurements.center_of_mass(img) | ||
|
||
rows,cols = img.shape | ||
shiftx = np.round(cols/2.0-cx).astype(int) | ||
shifty = np.round(rows/2.0-cy).astype(int) | ||
|
||
return shiftx,shifty | ||
|
||
|
||
def shift(img,sx,sy): | ||
rows,cols = img.shape | ||
M = np.float32([[1,0,sx],[0,1,sy]]) | ||
shifted = cv2.warpAffine(img,M,(cols,rows)) | ||
return shifted | ||
|
||
|
||
# create a MNIST_data folder with the MNIST dataset if necessary | ||
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) | ||
|
||
""" | ||
a placeholder for our image data: | ||
None stands for an unspecified number of images | ||
784 = 28*28 pixel | ||
""" | ||
x = tf.placeholder("float", [None, 784]) | ||
|
||
# we need our weights for our neural net | ||
W = tf.Variable(tf.zeros([784,10])) | ||
# and the biases | ||
b = tf.Variable(tf.zeros([10])) | ||
|
||
""" | ||
softmax provides a probability based output | ||
we need to multiply the image values x and the weights | ||
and add the biases | ||
(the normal procedure, explained in previous articles) | ||
""" | ||
y = tf.nn.softmax(tf.matmul(x,W) + b) | ||
|
||
""" | ||
y_ will be filled with the real values | ||
which we want to train (digits 0-9) | ||
for an undefined number of images | ||
""" | ||
y_ = tf.placeholder("float", [None,10]) | ||
|
||
""" | ||
we use the cross_entropy function | ||
which we want to minimize to improve our model | ||
""" | ||
cross_entropy = -tf.reduce_sum(y_*tf.log(y)) | ||
|
||
""" | ||
use a learning rate of 0.01 | ||
to minimize the cross_entropy error | ||
""" | ||
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) | ||
|
||
# initialize all variables | ||
init = tf.initialize_all_variables() | ||
|
||
# create a session | ||
sess = tf.Session() | ||
sess.run(init) | ||
|
||
# use 1000 batches with a size of 100 each to train our net | ||
for i in range(1000): | ||
batch_xs, batch_ys = mnist.train.next_batch(100) | ||
# run the train_step function with the given image values (x) and the real output (y_) | ||
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) | ||
|
||
""" | ||
Let's get the accuracy of our model: | ||
our model is correct if the index with the highest y value | ||
is the same as in the real digit vector | ||
The mean of the correct_prediction gives us the accuracy. | ||
We need to run the accuracy function | ||
with our test set (mnist.test) | ||
We use the keys "images" and "labels" for x and y_ | ||
""" | ||
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) | ||
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) | ||
print sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}) | ||
|
||
# create an an array where we can store our 4 pictures | ||
images = np.zeros((4,784)) | ||
# and the correct values | ||
correct_vals = np.zeros((4,10)) | ||
|
||
# we want to test our images which you saw at the top of this page | ||
i = 0 | ||
for no in [8,0,4,3]: | ||
# read the image | ||
gray = cv2.imread("blog/own_"+str(no)+".png", cv2.CV_LOAD_IMAGE_GRAYSCALE) | ||
|
||
# rescale it | ||
gray = cv2.resize(255-gray, (28, 28)) | ||
# better black and white version | ||
(thresh, gray) = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU) | ||
|
||
while np.sum(gray[0]) == 0: | ||
gray = gray[1:] | ||
|
||
while np.sum(gray[:,0]) == 0: | ||
gray = np.delete(gray,0,1) | ||
|
||
while np.sum(gray[-1]) == 0: | ||
gray = gray[:-1] | ||
|
||
while np.sum(gray[:,-1]) == 0: | ||
gray = np.delete(gray,-1,1) | ||
|
||
rows,cols = gray.shape | ||
|
||
if rows > cols: | ||
factor = 20.0/rows | ||
rows = 20 | ||
cols = int(round(cols*factor)) | ||
# first cols than rows | ||
gray = cv2.resize(gray, (cols,rows)) | ||
else: | ||
factor = 20.0/cols | ||
cols = 20 | ||
rows = int(round(rows*factor)) | ||
# first cols than rows | ||
gray = cv2.resize(gray, (cols, rows)) | ||
|
||
colsPadding = (int(math.ceil((28-cols)/2.0)),int(math.floor((28-cols)/2.0))) | ||
rowsPadding = (int(math.ceil((28-rows)/2.0)),int(math.floor((28-rows)/2.0))) | ||
gray = np.lib.pad(gray,(rowsPadding,colsPadding),'constant') | ||
|
||
shiftx,shifty = getBestShift(gray) | ||
shifted = shift(gray,shiftx,shifty) | ||
gray = shifted | ||
|
||
# save the processed images | ||
cv2.imwrite("pro-img/image_"+str(no)+".png", gray) | ||
""" | ||
all images in the training set have an range from 0-1 | ||
and not from 0-255 so we divide our flatten images | ||
(a one dimensional vector with our 784 pixels) | ||
to use the same 0-1 based range | ||
""" | ||
flatten = gray.flatten() / 255.0 | ||
""" | ||
we need to store the flatten image and generate | ||
the correct_vals array | ||
correct_val for the first digit (9) would be | ||
[0,0,0,0,0,0,0,0,0,1] | ||
""" | ||
images[i] = flatten | ||
correct_val = np.zeros((10)) | ||
correct_val[no] = 1 | ||
correct_vals[i] = correct_val | ||
i += 1 | ||
|
||
""" | ||
the prediction will be an array with four values, | ||
which show the predicted number | ||
""" | ||
prediction = tf.argmax(y,1) | ||
""" | ||
we want to run the prediction and the accuracy function | ||
using our generated arrays (images and correct_vals) | ||
""" | ||
print sess.run(prediction, feed_dict={x: images, y_: correct_vals}) | ||
print sess.run(accuracy, feed_dict={x: images, y_: correct_vals}) | ||
|
Oops, something went wrong.