Skip to content

Commit

Permalink
일단 클라이언트까지 결과 전송됨
Browse files Browse the repository at this point in the history
  • Loading branch information
ahn-kj committed Oct 29, 2016
1 parent 8d9b014 commit 7cda682
Show file tree
Hide file tree
Showing 24 changed files with 912 additions and 169 deletions.
Binary file added FlaskApi/blog/canvas.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added FlaskApi/blog/own_0.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added FlaskApi/blog/own_3.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added FlaskApi/blog/own_4.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added FlaskApi/blog/own_8.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
2 changes: 2 additions & 0 deletions FlaskApi/cps/checkpoint
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
model_checkpoint_path: "cps/model.ckpt"
all_model_checkpoint_paths: "cps/model.ckpt"
Binary file added FlaskApi/cps/model.ckpt
Binary file not shown.
Binary file added FlaskApi/img/test_2.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
144 changes: 144 additions & 0 deletions FlaskApi/input_data.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,144 @@
"""Functions for downloading and reading MNIST data."""
from __future__ import print_function
import gzip
import os
import urllib
import numpy
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
def maybe_download(filename, work_directory):
"""Download the data from Yann's website, unless it's already here."""
if not os.path.exists(work_directory):
os.mkdir(work_directory)
filepath = os.path.join(work_directory, filename)
if not os.path.exists(filepath):
filepath, _ = urllib.urlretrieve(SOURCE_URL + filename, filepath)
statinfo = os.stat(filepath)
print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.')
return filepath
def _read32(bytestream):
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
return numpy.frombuffer(bytestream.read(4), dtype=dt)
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def dense_to_one_hot(labels_dense, num_classes=10):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = numpy.arange(num_labels) * num_classes
labels_one_hot = numpy.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
def extract_labels(filename, one_hot=False):
"""Extract the labels into a 1D uint8 numpy array [index]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError(
'Invalid magic number %d in MNIST label file: %s' %
(magic, filename))
num_items = _read32(bytestream)
buf = bytestream.read(num_items)
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
if one_hot:
return dense_to_one_hot(labels)
return labels
class DataSet(object):
def __init__(self, images, labels, fake_data=False):
if fake_data:
self._num_examples = 10000
else:
assert images.shape[0] == labels.shape[0], (
"images.shape: %s labels.shape: %s" % (images.shape,
labels.shape))
self._num_examples = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
assert images.shape[3] == 1
images = images.reshape(images.shape[0],
images.shape[1] * images.shape[2])
# Convert from [0, 255] -> [0.0, 1.0].
images = images.astype(numpy.float32)
images = numpy.multiply(images, 1.0 / 255.0)
self._images = images
self._labels = labels
self._epochs_completed = 0
self._index_in_epoch = 0
@property
def images(self):
return self._images
@property
def labels(self):
return self._labels
@property
def num_examples(self):
return self._num_examples
@property
def epochs_completed(self):
return self._epochs_completed
def next_batch(self, batch_size, fake_data=False):
"""Return the next `batch_size` examples from this data set."""
if fake_data:
fake_image = [1.0 for _ in xrange(784)]
fake_label = 0
return [fake_image for _ in xrange(batch_size)], [
fake_label for _ in xrange(batch_size)]
start = self._index_in_epoch
self._index_in_epoch += batch_size
if self._index_in_epoch > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Shuffle the data
perm = numpy.arange(self._num_examples)
numpy.random.shuffle(perm)
self._images = self._images[perm]
self._labels = self._labels[perm]
# Start next epoch
start = 0
self._index_in_epoch = batch_size
assert batch_size <= self._num_examples
end = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
def read_data_sets(train_dir, fake_data=False, one_hot=False):
class DataSets(object):
pass
data_sets = DataSets()
if fake_data:
data_sets.train = DataSet([], [], fake_data=True)
data_sets.validation = DataSet([], [], fake_data=True)
data_sets.test = DataSet([], [], fake_data=True)
return data_sets
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 5000
local_file = maybe_download(TRAIN_IMAGES, train_dir)
train_images = extract_images(local_file)
local_file = maybe_download(TRAIN_LABELS, train_dir)
train_labels = extract_labels(local_file, one_hot=one_hot)
local_file = maybe_download(TEST_IMAGES, train_dir)
test_images = extract_images(local_file)
local_file = maybe_download(TEST_LABELS, train_dir)
test_labels = extract_labels(local_file, one_hot=one_hot)
validation_images = train_images[:VALIDATION_SIZE]
validation_labels = train_labels[:VALIDATION_SIZE]
train_images = train_images[VALIDATION_SIZE:]
train_labels = train_labels[VALIDATION_SIZE:]
data_sets.train = DataSet(train_images, train_labels)
data_sets.validation = DataSet(validation_images, validation_labels)
data_sets.test = DataSet(test_images, test_labels)
return data_sets
Binary file added FlaskApi/input_data.pyc
Binary file not shown.
15 changes: 10 additions & 5 deletions FlaskApi/main.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,13 @@
from flask import Flask
import flask
import os
import sys
import base64

from datetime import timedelta
from flask import make_response, request, current_app
from functools import update_wrapper

from mnist_javacafe_study import *

def crossdomain(origin=None, methods=None, headers=None,
max_age=21600, attach_to_all=True,
Expand Down Expand Up @@ -68,14 +70,17 @@ def upload():

# os.system("sh ../mnist/resize-script.sh")
# return "Hello World!"
print os.system("python ../TensorFlow-mnist/mnist_javacafe_study.py")
return "11"
# print os.system("python ./mnist_javacafe_study.py")
result = ocr()
print result
return flask.jsonify(**result)

# return "11"

@app.route("/test", methods=['GET', 'POST'])
def test():
return "" + os.system("./test.py")

app.debug = True

if __name__ == "__main__":
app.run()
app.run()
177 changes: 177 additions & 0 deletions FlaskApi/mnist.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,177 @@
import tensorflow as tf
import input_data
import cv2
import numpy as np
import math
from scipy import ndimage


def getBestShift(img):
cy,cx = ndimage.measurements.center_of_mass(img)

rows,cols = img.shape
shiftx = np.round(cols/2.0-cx).astype(int)
shifty = np.round(rows/2.0-cy).astype(int)

return shiftx,shifty


def shift(img,sx,sy):
rows,cols = img.shape
M = np.float32([[1,0,sx],[0,1,sy]])
shifted = cv2.warpAffine(img,M,(cols,rows))
return shifted


# create a MNIST_data folder with the MNIST dataset if necessary
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

"""
a placeholder for our image data:
None stands for an unspecified number of images
784 = 28*28 pixel
"""
x = tf.placeholder("float", [None, 784])

# we need our weights for our neural net
W = tf.Variable(tf.zeros([784,10]))
# and the biases
b = tf.Variable(tf.zeros([10]))

"""
softmax provides a probability based output
we need to multiply the image values x and the weights
and add the biases
(the normal procedure, explained in previous articles)
"""
y = tf.nn.softmax(tf.matmul(x,W) + b)

"""
y_ will be filled with the real values
which we want to train (digits 0-9)
for an undefined number of images
"""
y_ = tf.placeholder("float", [None,10])

"""
we use the cross_entropy function
which we want to minimize to improve our model
"""
cross_entropy = -tf.reduce_sum(y_*tf.log(y))

"""
use a learning rate of 0.01
to minimize the cross_entropy error
"""
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)

# initialize all variables
init = tf.initialize_all_variables()

# create a session
sess = tf.Session()
sess.run(init)

# use 1000 batches with a size of 100 each to train our net
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
# run the train_step function with the given image values (x) and the real output (y_)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

"""
Let's get the accuracy of our model:
our model is correct if the index with the highest y value
is the same as in the real digit vector
The mean of the correct_prediction gives us the accuracy.
We need to run the accuracy function
with our test set (mnist.test)
We use the keys "images" and "labels" for x and y_
"""
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})

# create an an array where we can store our 4 pictures
images = np.zeros((4,784))
# and the correct values
correct_vals = np.zeros((4,10))

# we want to test our images which you saw at the top of this page
i = 0
for no in [8,0,4,3]:
# read the image
gray = cv2.imread("blog/own_"+str(no)+".png", cv2.CV_LOAD_IMAGE_GRAYSCALE)

# rescale it
gray = cv2.resize(255-gray, (28, 28))
# better black and white version
(thresh, gray) = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)

while np.sum(gray[0]) == 0:
gray = gray[1:]

while np.sum(gray[:,0]) == 0:
gray = np.delete(gray,0,1)

while np.sum(gray[-1]) == 0:
gray = gray[:-1]

while np.sum(gray[:,-1]) == 0:
gray = np.delete(gray,-1,1)

rows,cols = gray.shape

if rows > cols:
factor = 20.0/rows
rows = 20
cols = int(round(cols*factor))
# first cols than rows
gray = cv2.resize(gray, (cols,rows))
else:
factor = 20.0/cols
cols = 20
rows = int(round(rows*factor))
# first cols than rows
gray = cv2.resize(gray, (cols, rows))

colsPadding = (int(math.ceil((28-cols)/2.0)),int(math.floor((28-cols)/2.0)))
rowsPadding = (int(math.ceil((28-rows)/2.0)),int(math.floor((28-rows)/2.0)))
gray = np.lib.pad(gray,(rowsPadding,colsPadding),'constant')

shiftx,shifty = getBestShift(gray)
shifted = shift(gray,shiftx,shifty)
gray = shifted

# save the processed images
cv2.imwrite("pro-img/image_"+str(no)+".png", gray)
"""
all images in the training set have an range from 0-1
and not from 0-255 so we divide our flatten images
(a one dimensional vector with our 784 pixels)
to use the same 0-1 based range
"""
flatten = gray.flatten() / 255.0
"""
we need to store the flatten image and generate
the correct_vals array
correct_val for the first digit (9) would be
[0,0,0,0,0,0,0,0,0,1]
"""
images[i] = flatten
correct_val = np.zeros((10))
correct_val[no] = 1
correct_vals[i] = correct_val
i += 1

"""
the prediction will be an array with four values,
which show the predicted number
"""
prediction = tf.argmax(y,1)
"""
we want to run the prediction and the accuracy function
using our generated arrays (images and correct_vals)
"""
print sess.run(prediction, feed_dict={x: images, y_: correct_vals})
print sess.run(accuracy, feed_dict={x: images, y_: correct_vals})

Loading

0 comments on commit 7cda682

Please sign in to comment.