Implementation of SCARL: Attentive Reinforcement Learning-Based Scheduling in a Multi-Resource Heterogeneous Cluster
baselines.py
: baseline heuristics.networks.py
: Model Networks implemented.mc_job_dist.py
: Job sequence generation.mc_env.py
: OpenAI Gym compatible cluster simulation environment.mc_eval.py
: Run model traininggenerate-train-data.ipynb
: train data generationenvTest-30-2_6.ipynb
: simple evaluation.
- create dataset using
generate-train-data.ipynb
- python mc_eval.py --step_size=15 --save_dir=model-2.0 --input=tr_2.0.pkl
I'm sorry that I can't disclose the script for training/running on actual k8s enironment. I can't find things I've done.
Implementation of the environment is mainly brought and extended from env of deeprm