đź‘‹ Join our WeChat.
[ English | ä¸ć–‡ ]
Preview LLaMA Board at 🤗 Spaces.
Launch LLaMA Board via CUDA_VISIBLE_DEVICES=0 python src/train_web.py
. (multiple GPUs are not supported yet)
Here is an example of altering the self-cognition of an instruction-tuned language model within 10 minutes on a single GPU.
tutorial.mp4
[23/10/21] We supported NEFTune trick for fine-tuning. Try --neft_alpha
argument to activate NEFTune, e.g., --neft_alpha 5
.
[23/09/27] We supported --shift_attn
argument to enable shift short attention.
[23/09/23] We integrated MMLU, C-Eval and CMMLU benchmarks in this repo. See this example to evaluate your models.
[23/09/10] We supported using FlashAttention-2 for the LLaMA models. Try --flash_attn
argument to enable FlashAttention-2 if you are using RTX4090, A100 or H100 GPUs.
[23/08/12] We supported RoPE scaling to extend the context length of the LLaMA models. Try --rope_scaling linear
argument in training and --rope_scaling dynamic
argument at inference to extrapolate the position embeddings.
[23/08/11] We supported DPO training for instruction-tuned models. See this example to train your models.
[23/07/31] We supported dataset streaming. Try --streaming
and --max_steps 10000
arguments to load your dataset in streaming mode.
[23/07/29] We released two instruction-tuned 13B models at Hugging Face. See these Hugging Face Repos (LLaMA-2 / Baichuan) for details.
[23/07/18] We developed an all-in-one Web UI for training, evaluation and inference. Try train_web.py
to fine-tune models in your Web browser. Thank @KanadeSiina and @codemayq for their efforts in the development.
[23/07/09] We released FastEdit ⚡🩹, an easy-to-use package for editing the factual knowledge of large language models efficiently. Please follow FastEdit if you are interested.
[23/06/29] We provided a reproducible example of training a chat model using instruction-following datasets, see Baichuan-7B-sft for details.
[23/06/22] We aligned the demo API with the OpenAI's format where you can insert the fine-tuned model in arbitrary ChatGPT-based applications.
[23/06/03] We supported quantized training and inference (aka QLoRA). Try --quantization_bit 4/8
argument to work with quantized models.
Model | Model size | Default module | Template |
---|---|---|---|
Baichuan | 7B/13B | W_pack | baichuan |
Baichuan2 | 7B/13B | W_pack | baichuan2 |
BLOOM | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
BLOOMZ | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
ChatGLM3 | 6B | query_key_value | chatglm3 |
Falcon | 7B/40B/180B | query_key_value | falcon |
InternLM | 7B/20B | q_proj,v_proj | intern |
LLaMA | 7B/13B/33B/65B | q_proj,v_proj | - |
LLaMA-2 | 7B/13B/70B | q_proj,v_proj | llama2 |
Mistral | 7B | q_proj,v_proj | mistral |
Phi-1.5 | 1.3B | Wqkv | - |
Qwen | 7B/14B | c_attn | qwen |
XVERSE | 7B/13B/65B | q_proj,v_proj | xverse |
Note
Default module is used for the --lora_target
argument, you can use --lora_target all
to specify all the available modules.
For the "base" models, the --template
argument can be chosen from default
, alpaca
, vicuna
etc. But make sure to use the corresponding template for the "chat" models.
Please refer to constants.py for a full list of models we supported.
Approach | Full-parameter | Partial-parameter | LoRA | QLoRA |
---|---|---|---|---|
Pre-Training | âś… | âś… | âś… | âś… |
Supervised Fine-Tuning | âś… | âś… | âś… | âś… |
Reward Modeling | âś… | âś… | âś… | âś… |
PPO Training | âś… | âś… | âś… | âś… |
DPO Training | âś… | âś… | âś… | âś… |
Note
Use --quantization_bit 4/8
argument to enable QLoRA.
Pre-training datasets
Supervised fine-tuning datasets
- Stanford Alpaca (en)
- Stanford Alpaca (zh)
- GPT-4 Generated Data (en&zh)
- Self-cognition (zh)
- Open Assistant (multilingual)
- ShareGPT (zh)
- Guanaco Dataset (multilingual)
- BELLE 2M (zh)
- BELLE 1M (zh)
- BELLE 0.5M (zh)
- BELLE Dialogue 0.4M (zh)
- BELLE School Math 0.25M (zh)
- BELLE Multiturn Chat 0.8M (zh)
- UltraChat (en)
- LIMA (en)
- OpenPlatypus (en)
- CodeAlpaca 20k (en)
- Alpaca CoT (multilingual)
- OpenOrca (en)
- MathInstruct (en)
- Firefly 1.1M (zh)
- Web QA (zh)
- WebNovel (zh)
- Ad Gen (zh)
- ShareGPT Hyperfiltered (en)
- ShareGPT4 (en&zh)
- UltraChat 200k (en)
- AgentInstruct (en)
- LMSYS Chat 1M (en)
- Evol Instruct V2 (en)
Preference datasets
Please refer to data/README.md for details.
Some datasets require confirmation before using them, so we recommend logging in with your Hugging Face account using these commands.
pip install --upgrade huggingface_hub
huggingface-cli login
- Python 3.8+ and PyTorch 1.13.1+
- 🤗Transformers, Datasets, Accelerate, PEFT and TRL
- sentencepiece, protobuf and tiktoken
- jieba, rouge-chinese and nltk (used at evaluation and predict)
- gradio and matplotlib (used in web UI)
- uvicorn, fastapi and sse-starlette (used in API)
And powerful GPUs!
Please refer to data/README.md for checking the details about the format of dataset files. You can either use a single .json
file or a dataset loading script with multiple files to create a custom dataset.
Note
Please update data/dataset_info.json
to use your custom dataset. About the format of this file, please refer to data/README.md
.
git clone https://github.com/hiyouga/LLaMA-Factory.git
conda create -n llama_factory python=3.10
conda activate llama_factory
cd LLaMA-Factory
pip install -r requirements.txt
If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you will be required to install a pre-built version of bitsandbytes
library, which supports CUDA 11.1 to 12.1.
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl
Important
If you want to train models on multiple GPUs, please refer to Distributed Training.
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage pt \
--model_name_or_path path_to_llama_model \
--do_train \
--dataset wiki_demo \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir path_to_pt_checkpoint \
--overwrite_cache \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--plot_loss \
--fp16
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
--model_name_or_path path_to_llama_model \
--do_train \
--dataset alpaca_gpt4_en \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir path_to_sft_checkpoint \
--overwrite_cache \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--plot_loss \
--fp16
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage rm \
--model_name_or_path path_to_llama_model \
--do_train \
--dataset comparison_gpt4_en \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--output_dir path_to_rm_checkpoint \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 1e-6 \
--num_train_epochs 1.0 \
--plot_loss \
--fp16
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage ppo \
--model_name_or_path path_to_llama_model \
--do_train \
--dataset alpaca_gpt4_en \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--reward_model path_to_rm_checkpoint \
--output_dir path_to_ppo_checkpoint \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--plot_loss \
--fp16
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage dpo \
--model_name_or_path path_to_llama_model \
--do_train \
--dataset comparison_gpt4_en \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--output_dir path_to_dpo_checkpoint \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--plot_loss \
--fp16
accelerate config # configure the environment
accelerate launch src/train_bash.py # arguments (same as above)
Example config for LoRA training
compute_environment: LOCAL_MACHINE
distributed_type: MULTI_GPU
downcast_bf16: 'no'
gpu_ids: all
machine_rank: 0
main_training_function: main
mixed_precision: fp16
num_machines: 1
num_processes: 4
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
--deepspeed ds_config.json \
... # arguments (same as above)
Example config for full-parameter training with DeepSpeed ZeRO-2
{
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": true,
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"initial_scale_power": 16,
"loss_scale_window": 1000,
"hysteresis": 2,
"min_loss_scale": 1
},
"zero_optimization": {
"stage": 2,
"allgather_partitions": true,
"allgather_bucket_size": 5e8,
"reduce_scatter": true,
"reduce_bucket_size": 5e8,
"overlap_comm": false,
"contiguous_gradients": true
}
}
python src/export_model.py \
--model_name_or_path path_to_llama_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--export_dir path_to_export
python src/api_demo.py \
--model_name_or_path path_to_llama_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
Note
Visit http://localhost:8000/docs
for API documentation.
python src/cli_demo.py \
--model_name_or_path path_to_llama_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
python src/web_demo.py \
--model_name_or_path path_to_llama_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
--model_name_or_path path_to_llama_model \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--template vanilla \
--task mmlu \
--split test \
--lang en \
--n_shot 5 \
--batch_size 4
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
--model_name_or_path path_to_llama_model \
--do_predict \
--dataset alpaca_gpt4_en \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--output_dir path_to_predict_result \
--per_device_eval_batch_size 8 \
--max_samples 100 \
--predict_with_generate
Note
We recommend using --per_device_eval_batch_size=1
and --max_target_length 128
at 4/8-bit predict.
- StarWhisper: A large language model for Astronomy, based on ChatGLM2-6B and Qwen-14B.
- DISC-LawLLM: A large language model specialized in Chinese legal domain, based on Baichuan-13B, is capable of retrieving and reasoning on legal knowledge.
- Sunsimiao: A large language model specialized in Chinese medical domain, based on Baichuan-7B and ChatGLM-6B.
- CareGPT: A series of large language models for Chinese medical domain, based on LLaMA2-7B and Baichuan-13B.
This repository is licensed under the Apache-2.0 License.
Please follow the model licenses to use the corresponding model weights: Baichuan / Baichuan2 / BLOOM / ChatGLM3 / Falcon / InternLM / LLaMA / LLaMA-2 / Mistral / Phi-1.5 / Qwen / XVERSE
If this work is helpful, please kindly cite as:
@Misc{llama-factory,
title = {LLaMA Factory},
author = {hiyouga},
howpublished = {\url{https://github.com/hiyouga/LLaMA-Factory}},
year = {2023}
}
This repo benefits from PEFT, QLoRA and FastChat. Thanks for their wonderful works.