-
Notifications
You must be signed in to change notification settings - Fork 0
agene0001/Fraud-Detection
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
Programming Assignment 7: Fraud Detection
/* *****************************************************************************
* Describe how you implemented the Clustering constructor
**************************************************************************** */
/* *****************************************************************************
* Describe how you implemented the WeakLearner constructor
**************************************************************************** */
/* *****************************************************************************
* Consider the large_training.txt and large_test.txt datasets.
* Run the boosting algorithm with different values of k and T (iterations),
* and calculate the test data set accuracy and plot them below.
*
* (Note: if you implemented the constructor of WeakLearner in O(kn^2) time
* you should use the small_training.txt and small_test.txt datasets instead,
* otherwise this will take too long)
**************************************************************************** */
k T test accuracy time (seconds)
--------------------------------------------------------------------------
/* *****************************************************************************
* Find the values of k and T that maximize the test data set accuracy,
* while running under 10 second. Write them down (as well as the accuracy)
* and explain:
* 1. Your strategy to find the optimal k, T.
* 2. Why a small value of T leads to low test accuracy.
* 3. Why a k that is too small or too big leads to low test accuracy.
**************************************************************************** */
/* *****************************************************************************
* Known bugs / limitations.
**************************************************************************** */
/* *****************************************************************************
* Describe any serious problems you encountered.
**************************************************************************** */
/* *****************************************************************************
* List any other comments here. Feel free to provide any feedback
* on how much you learned from doing the assignment, and whether
* you enjoyed doing it.
**************************************************************************** */
About
Fraud detection model implemnting weak learners and a simplified adaptive boosting algorithm. Classifies test data at 76% accuracy
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published