Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion aeon/clustering/deep_learning/_ae_dcnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -296,7 +296,8 @@ def _fit(self, X):

try:
self.model_ = tf.keras.models.load_model(
self.file_path + self.file_name_ + ".keras", compile=False
self.file_path + self.file_name_ + ".keras",
compile=False,
)
if not self.save_best_model:
os.remove(self.file_path + self.file_name_ + ".keras")
Expand Down
29 changes: 17 additions & 12 deletions aeon/networks/_ae_dcnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -241,20 +241,25 @@ def _dcnn_layer(
):
import tensorflow as tf

from aeon.utils.networks.weight_norm import _WeightNormalization

_add = tf.keras.layers.Conv1D(_num_filters, kernel_size=1)(_inputs)
x = tf.keras.layers.Conv1D(
_num_filters,
kernel_size=_kernel_size,
dilation_rate=_dilation_rate,
padding=_padding_encoder,
kernel_regularizer="l2",
x = _WeightNormalization(
tf.keras.layers.Conv1D(
_num_filters,
kernel_size=_kernel_size,
dilation_rate=_dilation_rate,
padding=_padding_encoder,
)
)(_inputs)
x = tf.keras.layers.Conv1D(
_num_filters,
kernel_size=_kernel_size,
dilation_rate=_dilation_rate,
padding=_padding_encoder,
kernel_regularizer="l2",
x = _WeightNormalization(
tf.keras.layers.Conv1D(
_num_filters,
kernel_size=_kernel_size,
dilation_rate=_dilation_rate,
padding=_padding_encoder,
activation=_activation,
)
)(x)
output = tf.keras.layers.Add()([x, _add])
output = tf.keras.layers.Activation(_activation)(output)
Expand Down
30 changes: 17 additions & 13 deletions aeon/networks/_dcnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -146,21 +146,25 @@ def _dcnn_layer(
):
import tensorflow as tf

from aeon.utils.networks.weight_norm import _WeightNormalization

_add = tf.keras.layers.Conv1D(_n_filters, kernel_size=1)(_inputs)
x = tf.keras.layers.Conv1D(
_n_filters,
kernel_size=_kernel_size,
dilation_rate=_dilation_rate,
padding=_padding,
kernel_regularizer="l2",
x = _WeightNormalization(
tf.keras.layers.Conv1D(
_n_filters,
kernel_size=_kernel_size,
dilation_rate=_dilation_rate,
padding=_padding,
)
)(_inputs)
x = tf.keras.layers.Conv1D(
_n_filters,
kernel_size=_kernel_size,
dilation_rate=_dilation_rate,
padding="causal",
kernel_regularizer="l2",
activation=_activation,
x = _WeightNormalization(
tf.keras.layers.Conv1D(
_n_filters,
kernel_size=_kernel_size,
dilation_rate=_dilation_rate,
padding=_padding,
activation=_activation,
)
)(x)
output = tf.keras.layers.Add()([x, _add])
output = tf.keras.layers.Activation(_activation)(output)
Expand Down
1 change: 1 addition & 0 deletions aeon/utils/networks/weight_norm.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
if _check_soft_dependencies(["tensorflow"], severity="none"):
import tensorflow as tf

@tf.keras.utils.register_keras_serializable(package="aeon")
class _WeightNormalization(tf.keras.layers.Wrapper):
"""Apply weight normalization to a Keras layer."""

Expand Down