Skip to content

In the Linux kernel, the following vulnerability has been...

High severity Unreviewed Published Dec 27, 2024 to the GitHub Advisory Database • Updated Oct 7, 2025

Package

No package listedSuggest a package

Affected versions

Unknown

Patched versions

Unknown

Description

In the Linux kernel, the following vulnerability has been resolved:

tcp_bpf: Fix the sk_mem_uncharge logic in tcp_bpf_sendmsg

The current sk memory accounting logic in __SK_REDIRECT is pre-uncharging
tosend bytes, which is either msg->sg.size or a smaller value apply_bytes.

Potential problems with this strategy are as follows:

  • If the actual sent bytes are smaller than tosend, we need to charge some
    bytes back, as in line 487, which is okay but seems not clean.

  • When tosend is set to apply_bytes, as in line 417, and (ret < 0), we may
    miss uncharging (msg->sg.size - apply_bytes) bytes.

[...]
415 tosend = msg->sg.size;
416 if (psock->apply_bytes && psock->apply_bytes < tosend)
417 tosend = psock->apply_bytes;
[...]
443 sk_msg_return(sk, msg, tosend);
444 release_sock(sk);
446 origsize = msg->sg.size;
447 ret = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
448 msg, tosend, flags);
449 sent = origsize - msg->sg.size;
[...]
454 lock_sock(sk);
455 if (unlikely(ret < 0)) {
456 int free = sk_msg_free_nocharge(sk, msg);
458 if (!cork)
459 *copied -= free;
460 }
[...]
487 if (eval == __SK_REDIRECT)
488 sk_mem_charge(sk, tosend - sent);
[...]

When running the selftest test_txmsg_redir_wait_sndmem with txmsg_apply,
the following warning will be reported:

------------[ cut here ]------------
WARNING: CPU: 6 PID: 57 at net/ipv4/af_inet.c:156 inet_sock_destruct+0x190/0x1a0
Modules linked in:
CPU: 6 UID: 0 PID: 57 Comm: kworker/6:0 Not tainted 6.12.0-rc1.bm.1-amd64+ #43
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
Workqueue: events sk_psock_destroy
RIP: 0010:inet_sock_destruct+0x190/0x1a0
RSP: 0018:ffffad0a8021fe08 EFLAGS: 00010206
RAX: 0000000000000011 RBX: ffff9aab4475b900 RCX: ffff9aab481a0800
RDX: 0000000000000303 RSI: 0000000000000011 RDI: ffff9aab4475b900
RBP: ffff9aab4475b990 R08: 0000000000000000 R09: ffff9aab40050ec0
R10: 0000000000000000 R11: ffff9aae6fdb1d01 R12: ffff9aab49c60400
R13: ffff9aab49c60598 R14: ffff9aab49c60598 R15: dead000000000100
FS: 0000000000000000(0000) GS:ffff9aae6fd80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007ffec7e47bd8 CR3: 00000001a1a1c004 CR4: 0000000000770ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:

? __warn+0x89/0x130
? inet_sock_destruct+0x190/0x1a0
? report_bug+0xfc/0x1e0
? handle_bug+0x5c/0xa0
? exc_invalid_op+0x17/0x70
? asm_exc_invalid_op+0x1a/0x20
? inet_sock_destruct+0x190/0x1a0
__sk_destruct+0x25/0x220
sk_psock_destroy+0x2b2/0x310
process_scheduled_works+0xa3/0x3e0
worker_thread+0x117/0x240
? __pfx_worker_thread+0x10/0x10
kthread+0xcf/0x100
? __pfx_kthread+0x10/0x10
ret_from_fork+0x31/0x40
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30

---[ end trace 0000000000000000 ]---

In __SK_REDIRECT, a more concise way is delaying the uncharging after sent
bytes are finalized, and uncharge this value. When (ret < 0), we shall
invoke sk_msg_free.

Same thing happens in case __SK_DROP, when tosend is set to apply_bytes,
we may miss uncharging (msg->sg.size - apply_bytes) bytes. The same
warning will be reported in selftest.

[...]
468 case __SK_DROP:
469 default:
470 sk_msg_free_partial(sk, msg, tosend);
471 sk_msg_apply_bytes(psock, tosend);
472 *copied -= (tosend + delta);
473 return -EACCES;
[...]

So instead of sk_msg_free_partial we can do sk_msg_free here.

References

Published by the National Vulnerability Database Dec 27, 2024
Published to the GitHub Advisory Database Dec 27, 2024
Last updated Oct 7, 2025

Severity

High

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v3 base metrics

Attack vector
Local
Attack complexity
Low
Privileges required
Low
User interaction
None
Scope
Unchanged
Confidentiality
High
Integrity
High
Availability
High

CVSS v3 base metrics

Attack vector: More severe the more the remote (logically and physically) an attacker can be in order to exploit the vulnerability.
Attack complexity: More severe for the least complex attacks.
Privileges required: More severe if no privileges are required.
User interaction: More severe when no user interaction is required.
Scope: More severe when a scope change occurs, e.g. one vulnerable component impacts resources in components beyond its security scope.
Confidentiality: More severe when loss of data confidentiality is highest, measuring the level of data access available to an unauthorized user.
Integrity: More severe when loss of data integrity is the highest, measuring the consequence of data modification possible by an unauthorized user.
Availability: More severe when the loss of impacted component availability is highest.
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

EPSS score

Exploit Prediction Scoring System (EPSS)

This score estimates the probability of this vulnerability being exploited within the next 30 days. Data provided by FIRST.
(9th percentile)

Weaknesses

No CWEs

CVE ID

CVE-2024-56633

GHSA ID

GHSA-gchp-wf2c-v3qv

Source code

No known source code

Dependabot alerts are not supported on this advisory because it does not have a package from a supported ecosystem with an affected and fixed version.

Learn more about GitHub language support

Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.