-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
23 changed files
with
1,056 additions
and
9 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
#author: @adithya8 | ||
|
||
if [ "$1" -eq "18" ]; | ||
then | ||
declare -A db=(["d"]="clp18_adi" ["t"]="tr_a11essays" ["c"]="clp18_id") | ||
declare -A dbTables=(["tr_a11"]="tr_a11essays") | ||
declare -A lexTables=(["tr_a11"]="tr_a11_bertb_") | ||
folderName="clp18_adi" | ||
dimRedModel=$2 | ||
msgk=$3 | ||
noEval="0" | ||
|
||
if [ "$4" -eq "1" ]; | ||
then | ||
noEval="1" | ||
fi | ||
elif [ "$1" -eq "19" ]; | ||
then | ||
declare -A db=(["d"]="clp19_adi" ["t"]="task_A" ["c"]="user_id") | ||
declare -A dbTables=(["A"]="task_A" ["C"]="task_Cfil" ["At"]="task_A_title" ["Ct"]="task_Cfil_title") | ||
declare -A lexTables=(["A"]="task_A_bert_" ["C"]="task_Cfil_bert_" ["At"]="taskAt_bert_" ["Ct"]="taskCt_bert_") | ||
folderName="clp19_adi" | ||
dimRedModel=$2 | ||
msgk=$3 | ||
titlek=$4 | ||
|
||
noEval="0" | ||
|
||
if [ "$5" -eq "1" ]; | ||
then | ||
noEval="1" | ||
fi | ||
else | ||
declare -A db=(["d"]="fb20_adi" ["t"]="tr_fb" ["c"]="user_id") | ||
declare -A dbTables=(["tr_fb"]="tr_fb") | ||
declare -A lexTables=(["tr_fb"]="tr_fb_bert_") | ||
folderName="fb20_adi" | ||
dimRedModel=$2 | ||
msgk=$3 | ||
noEval="0" | ||
|
||
if [ "$4" -eq "1" ]; | ||
then | ||
noEval="1" | ||
fi | ||
|
||
fi | ||
|
||
|
||
declare -A dimRedModels=(["fa"]="fa" ["pca"]="pca" ["nmf"]="nmf") | ||
|
||
echo "$1_$2_$3" | ||
echo "${noEval}" | ||
|
||
resultFile="BERTb_${dimRedModel}_${msgk}_${titlek}.txt" | ||
|
||
echo "$resultFile" | ||
|
||
if [ "${noEval}" -eq "0" ]; | ||
then | ||
if test -d "~/NLP/ContextualEmbeddingDR/results/${folderName}/BERTb_${dimRedModel}/"; then | ||
echo "Directory Exists" | ||
else | ||
eval "mkdir ~/NLP/ContextualEmbeddingDR/results/${folderName}/BERTb_${dimRedModel}/" | ||
if test -d "~/NLP/ContextualEmbeddingDR/results/${folderName}/BERTb_${dimRedModel}/"; then | ||
echo "Directory Created" | ||
fi | ||
fi | ||
fi | ||
|
||
for i in ${!dbTables[@]} | ||
do | ||
dbTable=${dbTables[$i]} | ||
lexTable=${lexTables[$i]} | ||
|
||
if [[ $dbTable =~ "title" ]] | ||
then | ||
k=${titlek} | ||
else | ||
k=${msgk} | ||
fi | ||
|
||
lexTableCr="python3 ~/dlatk/dlatk/dlatkInterface.py -d ${db["d"]} -t ${dbTable} -c ${db["c"]} --group_freq_thresh 0 -f 'feat\$bert_ba_un_memimaL10co\$${dbTable}\$${db["c"]}\$16to16' --fit_reducer --model ${dimRedModel} --n_components ${k} --reducer_to_lexicon ${lexTable}${dimRedModel}${k}" | ||
echo "${lexTableCr}" | ||
|
||
if [ "${noEval}" -eq "0" ]; | ||
then | ||
eval "${lexTableCr}" | ||
fi | ||
|
||
echo "----------------------------------------------------------------------" | ||
weightLex="python3 ~/dlatk/dlatk/dlatkInterface.py -d ${db["d"]} -t ${dbTable} -c ${db["c"]} --group_freq_thresh 0 --word_table 'feat\$bert_ba_un_memimaL10co\$${dbTable}\$${db["c"]}\$16to16' --add_lex -l ${lexTable}${dimRedModel}${k} --weighted_lex" | ||
echo "${weightLex}" | ||
|
||
if [ "${noEval}" -eq "0" ]; | ||
then | ||
eval "${weightLex}" | ||
fi | ||
|
||
echo "----------------------------------------------------------------------" | ||
done | ||
if [ "$1" -eq "18" ]; | ||
then | ||
finalCommand="python3 ~/dlatk/dlatk/dlatkInterface.py -d ${db["d"]} -t ${db["t"]} -c ${db["c"]} --group_freq_thresh 0 -f 'feat\$cat_${lexTables["tr_a11"]}${dimRedModel}${msgk}_w\$${db["t"]}\$${db["c"]}\$bert' --outcome_table tr_variables --outcomes a11_bsag_total --combo_test_reg --model ridgehighcv --folds 10 > ~/NLP/ContextualEmbeddingDR/results/clp${1}_adi/BERTb_${dimRedModel}/${resultFile}" | ||
elif [ "$1" -eq "19" ]; | ||
then | ||
finalCommand="python3 ~/dlatk/dlatk/dlatkInterface.py -d ${db["d"]} -t ${db["t"]} -c ${db["c"]} --group_freq_thresh 0 -f 'feat\$cat_${lexTables["A"]}${dimRedModel}${msgk}_w\$${db["t"]}\$${db["c"]}\$bert' 'feat\$cat_${lexTables["At"]}${dimRedModel}${titlek}_w\$task_A_title\$user_id\$bert' 'feat\$cat_${lexTables["C"]}${dimRedModel}${msgk}_w\$task_Cfil\$user_id\$bert' 'feat\$cat_${lexTables["Ct"]}${dimRedModel}${titlek}_w\$task_Cfil_title\$user_id\$bert' --outcome_table task_labels_full --outcomes label --nfold_classifiers --model lr --folds 10 > ~/NLP/ContextualEmbeddingDR/results/clp${1}_adi/BERTb_${dimRedModel}/${resultFile}" | ||
else | ||
finalCommand="python3 ~/dlatk/dlatk/dlatkInterface.py -d ${db["d"]} -t ${db["t"]} -c ${db["c"]} --group_freq_thresh 0 -f 'feat\$cat_${lexTables["tr_fb"]}${dimRedModel}${msgk}_w\$${db["t"]}\$${db["c"]}\$bert' --outcome_table masterstats_friendratings --outcomes ope con ext agr neu --combo_test_reg --model ridgehighcv --folds 10 > ~/NLP/ContextualEmbeddingDR/results/${folderName}/BERTb_${dimRedModel}/${resultFile}" | ||
fi | ||
echo "${finalCommand}" | ||
if [ "${noEval}" -eq "0" ]; | ||
then | ||
eval "${finalCommand}" | ||
fi | ||
echo "----------------------------------------------------------------------" | ||
|
||
if [ "${noEval}" -eq "0" ]; | ||
then | ||
if [ "$1" -eq "18" ]; | ||
then | ||
eval "cat ~/NLP/ContextualEmbeddingDR/results/${folderName}/BERTb_${dimRedModel}/${resultFile} | grep \'r\':" | ||
elif [ "$1" -eq "19" ]; | ||
then | ||
eval "cat ~/NLP/ContextualEmbeddingDR/results/${folderName}/BERTb_${dimRedModel}/${resultFile} | grep \'f1\':" | ||
else | ||
eval "cat ~/NLP/ContextualEmbeddingDR/results/${folderName}/BERTb_${dimRedModel}/${resultFile} | grep \'r\':" | ||
fi | ||
fi |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,99 @@ | ||
# author: @adithya8 | ||
|
||
if [ "$1" -eq "18" ]; | ||
then | ||
declare -A db=(["d"]="clp18_adi" ["t"]="tr_a11essays" ["c"]="clp18_id" ["o"]="a11_bsag_total") | ||
declare -A dbTables=(["te_a11"]="te_a11essays") | ||
declare -A lexTables=(["te_a11"]="tr_a11_bertb_") | ||
declare -A alpha=(["16"]="100" ["32"]="100" ["64"]="100" ["128"]="1000" ["256"]="1000" ["512"]="10000" ["1024"]="10000" ["2048"]="10000") | ||
dimRedModel=$2 | ||
msgk=$3 | ||
noEval="0" | ||
if [ "$4" -eq "1" ]; | ||
then | ||
noEval="1" | ||
fi | ||
|
||
saveModelCommand="python3 ~/dlatk/dlatk/dlatkInterface.py -d ${db["d"]} -t ${db["t"]} -c ${db["c"]} --group_freq_thresh 0 -f 'feat\$cat_${lexTables["te_a11"]}${dimRedModel}${msgk}_w\$tr_a11essays\$clp18_id\$bert' --outcome_table tr_variables --outcomes a11_bsag_total --train_regression --model ridge${alpha[${msgk}]} --save_model --picklefile /data/avirinchipur/models/clp${1}_adi/BERTb_${dimRedModel}_${msgk}.pickle" | ||
else | ||
declare -A db=(["d"]="clp19_adi" ["t"]="task_A" ["c"]="user_id" ["o"]="label") | ||
declare -A dbTables=(["Ate"]="task_A_test" ["Cte"]="task_Cfil_test" ["Atte"]="task_A_title_test" ["Ctte"]="task_Cfil_title_test") | ||
declare -A lexTables=(["Ate"]="task_A_bert_" ["Cte"]="task_Cfil_bert_" ["Atte"]="taskAt_bert_" ["Ctte"]="taskCt_bert_") | ||
dimRedModel=$2 | ||
msgk=$3 | ||
titlek=$4 | ||
noEval="0" | ||
|
||
if [ "$5" -eq "1" ]; | ||
then | ||
noEval="1" | ||
fi | ||
saveModelCommand="python3 ~/dlatk/dlatk/dlatkInterface.py -d ${db["d"]} -t ${db["t"]} -c ${db["c"]} --group_freq_thresh 0 -f 'feat\$cat_${lexTables["Ate"]}${dimRedModel}${msgk}_w\$task_A\$user_id\$bert' 'feat\$cat_${lexTables["Atte"]}${dimRedModel}${titlek}_w\$task_A_title\$user_id\$bert' 'feat\$cat_${lexTables["Cte"]}${dimRedModel}${msgk}_w\$task_Cfil\$user_id\$bert' 'feat\$cat_${lexTables["Ctte"]}${dimRedModel}${titlek}_w\$task_Cfil_title\$user_id\$bert' --outcome_table task_labels_full --outcomes label --train_classifiers --model lr --save_model --picklefile /data/avirinchipur/models/clp${1}_adi/BERTb_${dimRedModel}_${msgk}_${titlek}.pickle" | ||
fi | ||
|
||
echo "${saveModelCommand}" | ||
|
||
if [ "$noEval" -eq "0" ]; | ||
then | ||
eval "${saveModelCommand}" | ||
fi | ||
|
||
|
||
declare -A dimRedModels=(["fa"]="fa" ["pca"]="pca" ["nmf"]="nmf") | ||
|
||
resultFile="BERTb_${dimRedModel}_${msgk}_${titlek}_test.txt" | ||
|
||
echo "$resultFile" | ||
|
||
echo "$1_$2_$3" | ||
|
||
if [ "${noEval}" -eq "0" ]; | ||
then | ||
if test -d "~/NLP/ContextualEmbeddingDR/results/clp${1}_adi/BERTb_${dimRedModel}/"; then | ||
echo "Directory Exists" | ||
else | ||
eval "mkdir ~/NLP/ContextualEmbeddingDR/results/clp${1}_adi/BERTb_${dimRedModel}/" | ||
if test -d "~/NLP/ContextualEmbeddingDR/results/clp${1}_adi/BERTb_${dimRedModel}/"; then | ||
echo "Directory Created" | ||
fi | ||
fi | ||
fi | ||
|
||
for i in ${!dbTables[@]} | ||
do | ||
dbTable=${dbTables[$i]} | ||
lexTable=${lexTables[$i]} | ||
|
||
if [[ $dbTable =~ "title" ]] | ||
then | ||
k=${titlek} | ||
else | ||
k=${msgk} | ||
fi | ||
|
||
weightLex="python3 ~/dlatk/dlatk/dlatkInterface.py -d ${db["d"]} -t ${dbTable} -c ${db["c"]} --group_freq_thresh 0 --word_table 'feat\$bert_ba_un_memimaL10co\$${dbTable}\$${db["c"]}\$16to16' --add_lex -l ${lexTable}${dimRedModel}${k} --weighted_lex" | ||
echo "${weightLex}" | ||
|
||
if [ "${noEval}" -eq "0" ]; | ||
then | ||
eval "${weightLex}" | ||
fi | ||
|
||
echo "----------------------------------------------------------------------" | ||
done | ||
|
||
if [ "$1" -eq "18" ]; | ||
then | ||
finalCommand="python3 ~/dlatk/dlatk/dlatkInterface.py -d ${db["d"]} -t ${db["t"]} -c ${db["c"]} --group_freq_thresh 0 -f 'feat\$cat_${lexTables["te_a11"]}${dimRedModel}${msgk}_w\$te_a11essays\$${db["c"]}\$bert' --outcome_table te_a11essays_labels --outcomes a11_bsag_total --predict_regression --model ridge${alpha[${msgk}]} --load --picklefile /data/avirinchipur/models/clp${1}_adi/BERTb_${dimRedModel}_${msgk}.pickle > ~/NLP/ContextualEmbeddingDR/results/clp${1}_adi/BERTb_${dimRedModel}/${resultFile}" | ||
else | ||
finalCommand="python3 ~/dlatk/dlatk/dlatkInterface.py -d ${db["d"]} -t ${db["t"]} -c ${db["c"]} --group_freq_thresh 0 -f 'feat\$cat_task_A_bert_${dimRedModel}${msgk}_w\$task_A_test\$user_id\$bert' 'feat\$cat_taskAt_bert_${dimRedModel}${titlek}_w\$task_A_title_test\$user_id\$bert' 'feat\$cat_task_Cfil_bert_${dimRedModel}${msgk}_w\$task_Cfil_test\$user_id\$bert' 'feat\$cat_taskCt_bert_${dimRedModel}${titlek}_w\$task_Cfil_title_test\$user_id\$bert' --outcome_table crowd_test_A_label --outcomes label --predict_classifiers --model lr --load --picklefile /data/avirinchipur/models/clp${1}_adi/BERTb_${dimRedModel}_${msgk}_${titlek}.pickle > ~/NLP/ContextualEmbeddingDR/results/clp${1}_adi/BERTb_${dimRedModel}/${resultFile}" | ||
fi | ||
echo "${finalCommand}" | ||
|
||
if [ "$noEval" -eq "0" ]; | ||
then | ||
eval "${finalCommand}" | ||
fi | ||
|
||
echo "----------------------------------------------------------------------" | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
#author: @adithya8 | ||
|
||
declare -a msg=(14 36 64 118 207 386) | ||
declare -a title=(6 14 26 47 83 154) | ||
declare -a msgK=(14 36 71 143 286 357 495) | ||
declare -a titleK=(6 14 29 57 114 143 198) | ||
declare -a totK=(16 32 64 128 256 512 1024 2048) | ||
declare -a totK_=( ) | ||
|
||
|
||
# Last array index shouldn't apply for XLNet | ||
|
||
if [ "$#" -eq "3" ]; | ||
then | ||
experiment=$1 | ||
contextualEmbedding=$2 | ||
dimRedModel=$3 | ||
elif [ "$#" -eq "2" ]; | ||
then | ||
experiment="19" | ||
contextualEmbedding=$1 | ||
dimRedModel=$2 | ||
else | ||
echo "Pass Contextual Embedding (BERTB/XLNet), DimRedModel name as arg (pca/fa/nmf/nmfrand) -- Exiting !!!!" | ||
exit | ||
fi | ||
|
||
if [ "$1" -ne "19" ]; | ||
then | ||
msgK=( "${totK[@]}" ) | ||
titleK=( "${totK_[@]}" ) | ||
fi | ||
|
||
arraylength=${#msgK[@]} | ||
for (( i=1; i<${arraylength}+1; i++ )); | ||
do | ||
echo "bash ~/NLP/ContextualEmbeddingDR/${contextualEmbedding}DimRedExp.sh ${experiment} ${dimRedModel} ${msgK[$i-1]} ${titleK[$i-1]}" | ||
echo "----------------------------------------------------------------------" | ||
eval "bash ~/NLP/ContextualEmbeddingDR/${contextualEmbedding}DimRedExp.sh ${experiment} ${dimRedModel} ${msgK[$i-1]} ${titleK[$i-1]}" | ||
done | ||
|
||
#echo "f1 scores for increasing k sizes" | ||
#eval "cat ./results/XLNet_${dimRedModel}/* | grep \'f1\':" | ||
#eval "python ~/NLP/ContextualEmbeddingDR/tableMaker.py ${experiment} ${contextualEmbedding} ${dimRedModel}" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
#author: @adithya8 | ||
|
||
if [ "$1" -eq "18" ]; | ||
then | ||
declare -A db=(["d"]="clp18_adi" ["t"]="tr_a11essays" ["c"]="clp18_id") | ||
declare -A dbTables=(["tr_a11"]="tr_a11essays") | ||
declare -A lexTables=(["tr_a11"]="tr_a11_xln_") | ||
dimRedModel=$2 | ||
msgk=$3 | ||
else | ||
declare -A db=(["d"]="clp19_adi" ["t"]="task_A" ["c"]="user_id") | ||
declare -A dbTables=(["A"]="task_A" ["C"]="task_Cfil" ["At"]="task_A_title" ["Ct"]="task_Cfil_title") | ||
declare -A lexTables=(["A"]="task_A_xln_" ["C"]="task_Cfil_xln_" ["At"]="taskAt_xln_" ["Ct"]="taskCt_xln_") | ||
dimRedModel=$2 | ||
msgk=$3 | ||
titlek=$4 | ||
fi | ||
|
||
declare -A dimRedModels=(["fa"]="fa" ["pca"]="pca" ["nmf"]="nmf") | ||
|
||
resultFile="XLN_${dimRedModel}_${msgk}_${titlek}.txt" | ||
|
||
echo "$resultFile" | ||
|
||
echo "$1_$2_$3" | ||
|
||
if test -d "~/NLP/ContextualEmbeddingDR/results/clp${1}_adi/XLNet_${dimRedModel}/"; then | ||
echo "Directory Exists" | ||
else | ||
eval "mkdir ~/NLP/ContextualEmbeddingDR/results/clp${1}_adi/XLNet_${dimRedModel}/" | ||
if test -d "~/NLP/ContextualEmbeddingDR/results/clp${1}_adi/XLNet_${dimRedModel}/"; then | ||
echo "Directory Created" | ||
fi | ||
fi | ||
|
||
for i in ${!dbTables[@]} | ||
do | ||
dbTable=${dbTables[$i]} | ||
lexTable=${lexTables[$i]} | ||
|
||
if [[ $dbTable =~ "title" ]] | ||
then | ||
k=${titlek} | ||
else | ||
k=${msgk} | ||
fi | ||
|
||
lexTableCr="~/dlatk/dlatk/dlatkInterface.py -d ${db["d"]} -t ${dbTable} -c ${db["c"]} --group_freq_thresh 0 -f 'feat\$xlnet_ba_ca_memamiL10co\$${dbTable}\$${db["c"]}\$16to16' --fit_reducer --model ${dimRedModel} --n_components ${k} --reducer_to_lexicon ${lexTable}${dimRedModel}${k}" | ||
echo "${lexTableCr}" | ||
eval "${lexTableCr}" | ||
echo "----------------------------------------------------------------------" | ||
weightLex="~/dlatk/dlatk/dlatkInterface.py -d ${db["d"]} -t ${dbTable} -c ${db["c"]} --group_freq_thresh 0 --word_table 'feat\$xlnet_ba_ca_memamiL10co\$${dbTable}\$${db["c"]}\$16to16' --add_lex -l ${lexTable}${dimRedModel}${k} --weighted_lex" | ||
echo "${weightLex}" | ||
eval "${weightLex}" | ||
echo "----------------------------------------------------------------------" | ||
done | ||
|
||
if [ "$1" -eq "18" ]; | ||
then | ||
finalCommand="~/dlatk/dlatk/dlatkInterface.py -d ${db["d"]} -t ${db["t"]} -c ${db["c"]} --group_freq_thresh 0 -f 'feat\$cat_${lexTables["tr_a11"]}${dimRedModel}${msgk}_w\$${db["t"]}\$${db["c"]}\$xlne' --outcome_table tr_variables --outcomes a11_bsag_total --combo_test_reg --model ridgehighcv --folds 10 > ~/NLP/ContextualEmbeddingDR/results/clp${1}_adi/XLNet_${dimRedModel}/${resultFile}" | ||
#saveModelCommand="python3 ~/dlatk/dlatk/dlatkInterface.py -d ${db["d"]} -t ${db["t"]} -c ${db["c"]} --group_freq_thresh 0 -f 'feat\$cat_${lexTables["tr_a11"]}${dimRedModel}${msgk}_w\$${db["t"]}\$${db["c"]}\$xlne' --outcome_table task_labels_full --outcomes label --train_classifiers --model ridge --save_model --picklefile ~/NLP/ContextualEmbeddingDR/results/clp${1}_adi/XLNet_${dimRedModel}/xln_${dimRedModel}_${msgk}_${titlek}.pickle" | ||
else | ||
finalCommand="~/dlatk/dlatk/dlatkInterface.py -d ${db["d"]} -t ${db["t"]} -c ${db["c"]} --group_freq_thresh 0 -f 'feat\$cat_${lexTables["A"]}${dimRedModel}${msgk}_w\$${dbTables["A"]}\$${db["c"]}\$xlne' 'feat\$cat_${lexTables["At"]}${dimRedModel}${titlek}_w\$${dbTables["At"]}\$${db["c"]}\$xlne' 'feat\$cat_${lexTables["Ct"]}${dimRedModel}${titlek}_w\$${dbTables["Ct"]}\$${db["c"]}\$xlne' 'feat\$cat_${lexTables["C"]}${dimRedModel}${msgk}_w\$${dbTables["C"]}\$${db["c"]}\$xlne' --outcome_table task_labels_full --outcomes label --nfold_classifiers --model lr --folds 10 > ~/NLP/ContextualEmbeddingDR/results/clp${1}_adi/XLNet_${dimRedModel}/${resultFile}" | ||
#saveModelCommand="python3 ~/dlatk/dlatk/dlatkInterface.py -d ${db["d"]} -t ${db["t"]} -c ${db["c"]} --group_freq_thresh 0 -f 'feat\$cat_task_A_xln_${dimRedModel}${msgk}_w\$task_A\$user_id\$xlne' 'feat\$cat_taskAt_xln_${dimRedModel}${titlek}_w\$task_A_title\$user_id\$xlne' 'feat\$cat_taskCt_xln_${dimRedModel}${titlek}_w\$task_Cfil_title\$user_id\$xlne' 'feat\$cat_task_Cfil_xln_${dimRedModel}${msgk}_w\$task_Cfil\$user_id\$xlne' --outcome_table task_labels_full --outcomes label --train_classifiers --model lr --save_model --picklefile ~/NLP/ContextualEmbeddingDR/results/clp${1}_adi/XLNet_${dimRedModel}/xln_${dimRedModel}_${msgk}_${titlek}.pickle" | ||
fi | ||
echo "${finalCommand}" | ||
eval "${finalCommand}" | ||
echo "----------------------------------------------------------------------" | ||
|
||
if [ "$1" -eq "18" ]; | ||
then | ||
eval "cat ~/NLP/ContextualEmbeddingDR/results/clp${1}_adi/XLNet_${dimRedModel}/${resultFile} | grep \'R\':" | ||
else | ||
eval "cat ~/NLP/ContextualEmbeddingDR/results/clp${1}_adi/XLNet_${dimRedModel}/${resultFile} | grep \'f1\':" | ||
fi |
Oops, something went wrong.