Skip to content

Kodezi Chronos Debugging-first language model achieving 65.3% autonomous bug fixing (6-7x better than GPT-4). Research, benchmarks & evaluation framework. Model available Q1 2026 via Kodezi OS.

License

Notifications You must be signed in to change notification settings

aamir786-crypto/Chronos

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

1 Commit
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸš€ Kodezi Chronos

The World's First Debugging-First Language Model for Repository-Scale, Memory-Driven Code Understanding

arXiv Model Access License Research Benchmark

Debug Success Rate Root Cause Accuracy Improvement over GPT-4 Cost Efficiency

🎯 65.3% Autonomous Debugging Success β€’ πŸ” 78.4% Root Cause Accuracy β€’ ⚑ 2.2 Average Fix Cycles β€’ πŸ’° $1.36 per Bug Fix

Chronos Architecture


⚠️ IMPORTANT: Model Availability Notice ⚠️

Kodezi Chronos is proprietary technology with exclusive access

Timeline Access Details
Q4 2025 Beta Access Select enterprise partners via chronos.so
Q1 2026 General Availability Via Kodezi OS platform

This repository contains research findings, benchmarks, and evaluation frameworks. The model itself is not publicly available.


🌟 Revolutionary AI That Debugs Like a Senior Developer

Quick Start β€’ Get Early Access β€’ Read Paper β€’ View Benchmarks β€’ Documentation β€’ Case Studies


πŸ† Breakthrough Performance Metrics

Overall Benchmark Results (5,000+ Real-World Debugging Scenarios)

Metric Kodezi Chronos GPT-4 Claude-3-Opus Gemini-1.5-Pro Improvement
Debug Success Rate 65.3%Β±1.4%* 8.5%Β±2.1% 7.8%Β±2.3% 11.2%Β±1.7% 5.8-8.4x
Root Cause Accuracy 78.4%Β±1.2%* 12.3%Β±1.8% 11.7%Β±2.0% 15.8%Β±1.5% 5.0-6.7x
Average Fix Cycles 2.2 6.5 6.8 5.1 2.3-3.1x faster
Retrieval Precision 91%Β±0.8%* 68%Β±2.3% 67%Β±2.4% 74%Β±1.8% 1.2-1.4x
Cost per Success $1.36 $5.53 $6.67 $6.07 4.1-4.9x cheaper

*p < 0.001 compared to best baseline (two-tailed t-test, n=5,000)

Performance by Bug Category

Bug Category Chronos GPT-4 Claude-3 Gemini-1.5 Chronos Advantage
Syntax Errors 94.2% 82.3% 79.8% 85.1% 1.1x
Logic Bugs 72.8% 12.1% 10.7% 15.3% 6.0x
Concurrency Issues 58.3% 3.2% 2.8% 4.1% 18.2x
Memory Problems 61.7% 5.7% 4.3% 6.9% 10.8x
API Misuse 79.1% 18.9% 16.2% 22.4% 4.2x
Performance Bugs 65.4% 7.4% 6.1% 9.8% 8.8x

Repository Scale Performance

Repository Size Chronos Success Best Baseline Baseline Model Improvement
<10K LOC 71.2%Β±2.8% 21.3%Β±3.5% Gemini-1.5-Pro 3.3x
10K-100K LOC 68.9%Β±2.5% 14.7%Β±3.2% Gemini-1.5-Pro 4.7x
100K-1M LOC 64.3%Β±2.9% 8.9%Β±2.8% Gemini-1.5-Pro 7.2x
>1M LOC 59.7%Β±3.1% 3.8%Β±1.9% Gemini-1.5-Pro 15.7x

🧠 What Makes Chronos Revolutionary?

1. Debugging-First Architecture

Unlike code completion models trained on next-token prediction, Chronos is purpose-built from 42.5 million real debugging examples

2. Persistent Debug Memory

Learns from every debugging session across your codebase, improving continuously with cross-session pattern recognition

3. Adaptive Graph-Guided Retrieval (AGR)

Dynamic k-hop expansion enables unlimited context through intelligent graph traversal, not brute-force token expansion

4. Output-Optimized Design

Recognizes debugging as inherently output-heavy (~3K output vs ~3.6K input tokens), optimized for generating fixes, tests, and documentation

5. Autonomous Debugging Loop

Iteratively refines fixes through propose β†’ test β†’ analyze β†’ refine cycles until all tests pass


πŸ—οΈ Seven-Layer Architecture

graph TD
    A[Multi-Source Input Layer] --> B[Adaptive Retrieval Engine]
    B --> C[Debug-Tuned LLM Core]
    C --> D[Orchestration Controller]
    D --> E[Execution Sandbox]
    E --> F[Validation Results]
    F --> G{Tests Pass?}
    G -->|No| H[Iterative Refinement]
    H --> B
    G -->|Yes| I[Persistent Memory Update]
    I --> J[Fix Deployed]
    
    style A fill:#f9f,stroke:#333,stroke-width:4px
    style C fill:#bbf,stroke:#333,stroke-width:4px
    style I fill:#bfb,stroke:#333,stroke-width:4px
Loading

Architecture Layers Explained

  1. Multi-Source Input Layer

    • Ingests heterogeneous debugging signals: source code, CI/CD logs, error traces, tests, documentation
    • Processes 10+ input modalities simultaneously
  2. Adaptive Retrieval Engine (AGR)

    • Dynamic k-hop neighbor expansion (k=1-5 based on complexity)
    • 89.2% precision vs 42.3% for flat retrieval
    • Handles temporal code evolution and refactoring
  3. Debug-Tuned LLM Core

    • Trained on debugging workflows, not code completion
    • Specialized tasks: root cause prediction, multi-file patches, test interpretation
    • 78.4% root cause accuracy vs 15.8% best baseline
  4. Orchestration Controller

    • Manages autonomous debugging loop
    • Hypothesis generation β†’ fix refinement β†’ rollback on failure
    • Average 2.2 cycles to success
  5. Persistent Debug Memory

    • Repository-specific bug patterns and fixes
    • Cross-session learning and adaptation
    • 7.3x better token efficiency through memory
  6. Execution Sandbox

    • Isolated test execution environment
    • CI/CD pipeline emulation
    • Real-time validation without production risk
  7. Explainability Layer

    • Human-readable root cause explanations
    • Automated PR descriptions and commit messages
    • Risk assessment for proposed changes

πŸ“Š Multi-Random Retrieval (MRR) Benchmark

Revolutionary Evaluation Framework

Metric Chronos GPT-4+RAG Claude-3+VectorDB Gemini-1.5+Graph
Precision@10 89.2% 42.3% 48.1% 51.7%
Recall@10 84.7% 31.7% 36.2% 41.8%
Fix Accuracy 67.3% 8.9% 11.2% 14.6%
Context Efficiency 0.71 0.23 0.28 0.31

MRR tests real-world debugging by scattering context across 10-50 files over 3-12 months of history


πŸš€ Getting Started

Research Repository Setup

# Clone the repository
git clone https://github.com/kodezi/chronos-research.git
cd chronos-research

# Install dependencies
pip install -r requirements.txt

# Run performance analysis notebooks
jupyter notebook notebooks/performance_analysis.ipynb

# Generate benchmark visualizations
python scripts/generate_visualizations.py

Access Chronos Model

Step Action Timeline
1 Join Waitlist Available Now
2 Beta Access Q4 2025
3 General Availability Q1 2026

πŸ“ Repository Structure

chronos-research/
β”œβ”€β”€ paper/                    # Research paper (arXiv:2507.12482)
β”‚   β”œβ”€β”€ chronos-research.md   # Full paper content
β”‚   β”œβ”€β”€ figures/              # All paper figures
β”‚   └── tables/               # Performance data tables
β”œβ”€β”€ benchmarks/               # Evaluation frameworks
β”‚   β”œβ”€β”€ multi-random-retrieval/  # MRR benchmark suite
β”‚   β”œβ”€β”€ debug_categories/        # Bug taxonomy
β”‚   └── evaluation_metrics/      # Metrics implementation
β”œβ”€β”€ results/                  # Performance analysis
β”‚   β”œβ”€β”€ case_studies/         # Real debugging examples
β”‚   β”œβ”€β”€ ablation_studies/     # Component analysis
β”‚   └── performance_tables/   # Detailed metrics
β”œβ”€β”€ architecture/             # System design docs
β”‚   β”œβ”€β”€ agr_retrieval.md     # AGR algorithm details
β”‚   β”œβ”€β”€ memory_engine.md     # Persistent memory design
β”‚   └── debugging_loop.md    # Autonomous loop
β”œβ”€β”€ evaluation/               # Testing methodology
β”œβ”€β”€ examples/                 # Code examples
β”œβ”€β”€ docs/                     # User documentation
β”œβ”€β”€ notebooks/                # Analysis notebooks
└── scripts/                  # Utility scripts

🌟 Key Innovations

1. Revolutionary Training Dataset

  • 42.5M total debugging examples
  • 15M GitHub issues with linked PRs and fixes
  • 8M stack traces paired with resolutions
  • 3M CI/CD logs from failed and fixed builds
  • 2.5M production debugging sessions
  • 14M examples from Defects4J, SWE-bench, BugsInPy

2. Adaptive Graph-Guided Retrieval (AGR)

Performance by Retrieval Depth:
k=1 (Direct): 58.2% success
k=2 (Expanded): 72.4% success  
k=3 (Deep): 71.8% success
k=adaptive: 87.1% success (dynamic depth selection)
Flat retrieval: 23.4% success

3. Output-Heavy Optimization

Token Distribution in Debugging:
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Input Tokens:           ~3,600 (sparse)
Output Tokens:          ~3,000 (dense)
Output Entropy Density: 47.2% (vs 12.8% for code completion)

4. Persistent Debug Memory

  • Cross-session learning improves success rate from 35% β†’ 65% over time
  • 7.3x token efficiency through intelligent memory
  • Repository-specific pattern recognition
  • Temporal code evolution tracking

πŸ“ˆ Detailed Performance Analysis

Language-Specific Performance

Language Chronos GPT-4 Claude-3 Gemini-1.5 Test Suite
Python 68.7%Β±2.1% 11.2%Β±2.8% 10.3%Β±2.9% 14.6%Β±2.6% 1,823 bugs
JavaScript 64.2%Β±2.3% 7.8%Β±2.5% 6.9%Β±2.6% 10.1%Β±2.4% 1,547 bugs
Java 63.9%Β±2.2% 6.3%Β±2.2% 5.7%Β±2.3% 9.2%Β±2.1% 1,630 bugs
Go 66.8%Β±2.4% 9.1%Β±2.6% 8.4%Β±2.7% 12.3%Β±2.5% 892 bugs
C++ 61.2%Β±2.6% 5.2%Β±2.1% 4.8%Β±2.2% 7.9%Β±2.0% 1,108 bugs

Debugging Cycle Efficiency

Iteration Chronos Success GPT-4 Success Time Reduction
1st Attempt 42.3% 3.2% -87% time
2nd Attempt 58.7% (+16.4%) 5.1% (+1.9%) -83% time
3rd Attempt 65.3% (+6.6%) 6.8% (+1.7%) -79% time
4+ Attempts 65.3% (converged) 8.5% (+1.7%) -74% time

Context Window Efficiency

Model Context Size Debug Success Note
GPT-4-32K 32K tokens 7.2% More context β‰  better debugging
Claude-3-200K 200K tokens 9.8% Attention dilution at scale
Gemini-1.5-Pro-1M 1M tokens 14.3% Best traditional model
Chronos Unlimited* 71.2% *Via intelligent retrieval

πŸ”¬ Ablation Studies

Component Contribution Analysis

Configuration Debug Success Impact
Full Chronos 65.3% Complete system
No Multi-Code Association 35.8% -45% performance
Static Memory Only 40.1% -39% performance
No Orchestration Loop 42.5% -35% performance
No AGR (Flat Retrieval) 28.7% -56% performance

πŸ“š Documentation

Getting Started Architecture Benchmarks API Reference
Quick start guide System design details Evaluation methodology Future API documentation
Performance Case Studies FAQ Limitations
Detailed metrics Real-world examples Common questions Known constraints

🀝 Contributing

We welcome contributions to the evaluation framework and benchmarks!

# Fork and clone
git clone https://github.com/[your-username]/chronos-research
cd chronos-research

# Create feature branch
git checkout -b feature/your-contribution

# Make changes and test
python -m pytest tests/

# Submit PR
git push origin feature/your-contribution

See CONTRIBUTING.md for detailed guidelines.


πŸ“ Citation

If you use this research in your work, please cite:

@article{khan2025chronos,
  title={Kodezi Chronos: A Debugging-First Language Model for 
         Repository-Scale, Memory-Driven Code Understanding},
  author={Khan, Ishraq and Chowdary, Assad and 
          Haseeb, Sharoz and Patel, Urvish},
  journal={arXiv preprint arXiv:2507.12482},
  year={2025},
  url={https://arxiv.org/abs/2507.12482}
}

🏒 About Kodezi

Kodezi is building the future of autonomous software maintenance. Our mission is to empower developers with AI that truly understands code at scale.


πŸ“ž Contact & Community

Connect With Us

Website Paper Twitter LinkedIn Email

Join the Discussion

GitHub Discussions


πŸ“„ License

This research repository is licensed under the MIT License - see LICENSE for details.

⚠️ Important: The Kodezi Chronos model itself is proprietary technology and is not included in this repository. Model waitlist access is available at chronos.so.


πŸš€ The Future of Debugging is Here

Built with ❀️ by the Kodezi Team

About

Kodezi Chronos Debugging-first language model achieving 65.3% autonomous bug fixing (6-7x better than GPT-4). Research, benchmarks & evaluation framework. Model available Q1 2026 via Kodezi OS.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 60.9%
  • Jupyter Notebook 22.2%
  • HTML 14.1%
  • Makefile 2.8%