Skip to content

[NeurIPS 2022] Multi-scale Masked Autoencoders for Hierarchical Point Cloud Pre-training

License

Notifications You must be signed in to change notification settings

ZrrSkywalker/Point-M2AE

Repository files navigation

Point-M2AE: Multi-scale Masked Autoencoders for Hierarchical Point Cloud Pre-training

PWC PWC PWC

Official implementation of 'Point-M2AE: Multi-scale Masked Autoencoders for Hierarchical Point Cloud Pre-training'.

The paper has been accepted by NeurIPS 2022.

News

  • We revise some bugs for pre-trianing and release the fine-tuning code of Point-M2AE 📌.
  • Our latest work, I2P-MAE has been accepted by CVPR 2023 🔥 and open-sourced. I2P-MAE leverges 2D pre-trained models to guide the pre-training of Point-M2AE and achieves SOTA performance on various 3D tasks.

Introduction

Comparison with existing MAE-based models for self-supervised 3D point cloud learning on ModelNet40 dataset:

Method Parameters GFlops Extra Data Linear SVM Fine-tuning Voting
Point-BERT 22.1M 4.8 - 87.4% 92.7% 93.2%
ACT 22.1M 4.8 2D - - 93.7%
Point-MAE 22.1M 4.8 - 91.0% 93.2% 93.8%
Point-M2AE 12.9M 3.6 - 92.9% 93.4% 94.0%
I2P-MAE 12.9M 3.6 2D 93.4% 93.7% 94.1%

Point-M2AE is a strong Multi-scale MAE pre-training framework for hierarchical self-supervised learning of 3D point clouds. Unlike the standard transformer in MAE, we modify the encoder and decoder into pyramid architectures to progressively model spatial geometries and capture both fine-grained and high-level semantics of 3D shapes. We design a multi-scale masking strategy to generate consistent visible regions across scales, and reconstruct the masked coordinates from a global-to-local perspective.

Point-M2AE Models

Pre-training

Pre-trained by ShapeNet, Point-M2AE is evaluated by Linear SVM on ModelNet40 and ScanObjectNN (OBJ-BG split) datasets, without downstream fine-tuning:

Task Dataset Config MN40 Acc. OBJ-BG Acc. Ckpts Logs
Pre-training ShapeNet point-m2ae.yaml 92.87% 84.12% pre-train.pth log

Fine-tuning

Synthetic shape classification on ModelNet40 with 1k points:

Task Config Acc. Vote Ckpts Logs
Classification modelnet40.yaml 93.43% 93.96% modelnet40.pth modelnet40.log

Real-world shape classification on ScanObjectNN:

Task Split Config Acc. Ckpts Logs
Classification PB-T50-RS scan_pb.yaml 86.43% scan_pd.pth scan_pd.log
Classification OBJ-BG scan_obj-bg.yaml 91.22% scan_obj-bg.pth scan_obj-pd.log
Classification OBJ-ONLY scan_obj.yaml 88.81% scan_obj.pth scan_obj.log

Part segmentation on ShapeNetPart:

Task Dataset Config mIoUc mIoUi Ckpts Logs
Segmentation ShapeNetPart segmentation 84.86% 86.51% seg.pth seg.log

Few-shot classification on ModelNet40:

Task Dataset Config 5w10s 5w20s 10w10s 10w20s
Few-shot Cls. ModelNet40 - 96.8% 98.3% 92.3% 95.0%

Requirements

Installation

Create a conda environment and install basic dependencies:

git clone https://github.com/ZrrSkywalker/Point-M2AE.git
cd Point-M2AE

conda create -n pointm2ae python=3.8
conda activate pointm2ae

# Install the according versions of torch and torchvision
conda install pytorch torchvision cudatoolkit
# e.g., conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3

pip install -r requirements.txt

Install GPU-related packages:

# Chamfer Distance and EMD
cd ./extensions/chamfer_dist
python setup.py install --user
cd ../emd
python setup.py install --user

# PointNet++
pip install "git+https://github.com/erikwijmans/Pointnet2_PyTorch.git#egg=pointnet2_ops&subdirectory=pointnet2_ops_lib"

# GPU kNN
pip install --upgrade https://github.com/unlimblue/KNN_CUDA/releases/download/0.2/KNN_CUDA-0.2-py3-none-any.whl

Datasets

For pre-training and fine-tuning, please follow DATASET.md to install ShapeNet, ModelNet40, ScanObjectNN, and ShapeNetPart datasets, referring to Point-BERT. Specially for Linear SVM evaluation, download the official ModelNet40 dataset and put the unzip folder under data/.

The final directory structure should be:

│Point-M2AE/
├──cfgs/
├──datasets/
├──data/
│   ├──ModelNet/
│   ├──ModelNetFewshot/
│   ├──modelnet40_ply_hdf5_2048/  # Specially for Linear SVM
│   ├──ScanObjectNN/
│   ├──ShapeNet55-34/
│   ├──shapenetcore_partanno_segmentation_benchmark_v0_normal/
├──...

Get Started

Pre-training

Point-M2AE is pre-trained on ShapeNet dataset with the config file cfgs/pre-training/point-m2ae.yaml. Run:

CUDA_VISIBLE_DEVICES=0 python main.py --config cfgs/pre-training/point-m2ae.yaml --exp_name pre-train

To evaluate the pre-trained Point-M2AE by Linear SVM, create a folder ckpts/ and download the pre-train.pth into it. Use the configs in cfgs/linear-svm/ and indicate the evaluation dataset by --test_svm.

For ModelNet40, run:

CUDA_VISIBLE_DEVICES=0 python main.py --config cfgs/linear-svm/modelnet40.yaml --test_svm modelnet40 --exp_name test_svm --ckpts ./ckpts/pre-train.pth

For ScanObjectNN (OBJ-BG split), run:

CUDA_VISIBLE_DEVICES=0 python main.py --config cfgs/linear-svm/scan_obj-bg.yaml --test_svm scan --exp_name test_svm --ckpts ./ckpts/pre-train.pth

Fine-tuning

Please create a folder ckpts/ and download the pre-train.pth into it. The fine-tuning configs are in cfgs/fine-tuning/.

For ModelNet40, run:

CUDA_VISIBLE_DEVICES=0 python main.py --config cfgs/fine-tuning/modelnet40.yaml --finetune_model --exp_name finetune --ckpts ckpts/pre-train.pth

For the three splits of ScanObjectNN, run:

CUDA_VISIBLE_DEVICES=0 python main.py --config cfgs/fine-tuning/scan_pb.yaml --finetune_model --exp_name finetune --ckpts ckpts/pre-train.pth
CUDA_VISIBLE_DEVICES=0 python main.py --config cfgs/fine-tuning/scan_obj.yaml --finetune_model --exp_name finetune --ckpts ckpts/pre-train.pth
CUDA_VISIBLE_DEVICES=0 python main.py --config cfgs/fine-tuning/scan_obj-bg.yaml --finetune_model --exp_name finetune --ckpts ckpts/pre-train.pth

For ShapeNetPart, first into the segmentation/ folder, and run:

cd segmentation
CUDA_VISIBLE_DEVICES=0 python main.py --model Point_M2AE_SEG --log_dir finetune --ckpts ./ckpts/pre-train.pth

Evaluation

Please download the pre-trained models from here and put them into the folder ckpts/.

For ModelNet40 without voting, run:

CUDA_VISIBLE_DEVICES=0 python main.py --config cfgs/fine-tuning/modelnet40.yaml --test --exp_name finetune --ckpts ckpts/modelnet.pth

For ModelNet40 with voting, run:

CUDA_VISIBLE_DEVICES=0 python main.py --config cfgs/fine-tuning/modelnet40.yaml --test --vote --exp_name finetune_vote --ckpts ckpts/modelnet.pth

For the three splits of ScanObjectNN, run:

CUDA_VISIBLE_DEVICES=0 python main.py --config cfgs/fine-tuning/scan_pb.yaml --test --exp_name finetune --ckpts ckpts/scan_pb.pth
CUDA_VISIBLE_DEVICES=0 python main.py --config cfgs/fine-tuning/scan_obj.yaml --test --exp_name finetune --ckpts ckpts/scan_obj.pth
CUDA_VISIBLE_DEVICES=0 python main.py --config cfgs/fine-tuning/scan_obj-bg.yaml --test --exp_name finetune --ckpts ckpts/scan_obj-bg.pth

Acknowledgement

This repo benefits from Point-BERT and Point-MAE. Thanks for their wonderful works.

Citation

@article{zhang2022point,
  title={Point-M2AE: Multi-scale Masked Autoencoders for Hierarchical Point Cloud Pre-training},
  author={Zhang, Renrui and Guo, Ziyu and Gao, Peng and Fang, Rongyao and Zhao, Bin and Wang, Dong and Qiao, Yu and Li, Hongsheng},
  journal={arXiv preprint arXiv:2205.14401},
  year={2022}
}

Contact

If you have any question about this project, please feel free to contact zhangrenrui@pjlab.org.cn.

About

[NeurIPS 2022] Multi-scale Masked Autoencoders for Hierarchical Point Cloud Pre-training

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published