Skip to content

The Region Update

Compare
Choose a tag to compare
@ZibraMax ZibraMax released this 20 Feb 00:09
· 167 commits to master since this release

Build status
Docs
PyPI version
Codacy Badge
License: MIT
made-with-python
GitHub release

A Python FEM implementation.

N dimensional FEM implementation for M variables per node problems.

Installation

Use the package manager pip to install AFEM.

pip install AFEM

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

Full Docs

Tutorial

Using pre implemented equations

Avaliable equations:

  • 1D 1 Variable ordinary diferential equation
  • 1D 1 Variable 1D Heat with convective border
  • 1D 2 Variable Euler Bernoulli Beams
  • 1D 3 Variable Non-linear Euler Bernoulli Beams
  • 2D 1 Variable Torsion
  • 2D 1 Variable Poisson equation
  • 2D 1 Variable second order PDE
  • 2D 1 Variable 2D Heat with convective borders
  • 2D 2 Variable Plane Strees
  • 2D 2 Variable Plane Strees Orthotropic
  • 2D 2 Variable Plane Strain
  • 3D 3 variables per node isotropic elasticity

Numerical Validation:

  • 1D 1 Variable ordinary diferential equation
  • 1D 1 Variable 1D Heat with convective border
  • 1D 2 Variable Euler Bernoulli Beams
  • 1D 3 Variable Non-linear Euler Bernoulli Beams
  • 2D 1 Variable Torsion
  • 2D 1 Variable 2D Heat with convective borders
  • 2D 2 Variable Plane Strees
  • 2D 2 Variable Plane Strain

Steps:

  • Create geometry
  • Create Border Conditions (Point and regions supported)
  • Solve!
  • For example: Example 2, Example 5, Example 11-14

Example without geometry file (Test 2):

import matplotlib.pyplot as plt #Import libraries
from FEM.Torsion2D import Torsion2D #import AFEM Torsion class
from FEM.Geometry import Delaunay #Import Meshing tools

#Define some variables with geometric properties
a = 0.3
b = 0.3
tw = 0.05
tf = 0.05

#Define material constants
E = 200000
v = 0.27
G = E / (2 * (1 + v))
phi = 1 #Rotation angle

#Define domain coordinates
vertices = [
        [0, 0],
        [a, 0],
        [a, tf],
        [a / 2 + tw / 2, tf],
        [a / 2 + tw / 2, tf + b],
        [a, tf + b],
        [a, 2 * tf + b],
        [0, 2 * tf + b],
        [0, tf + b],
        [a / 2 - tw / 2, tf + b],
        [a / 2 - tw / 2, tf],
        [0, tf],
]

#Define triangulation parameters with `_strdelaunay` method.
params = Delaunay._strdelaunay(constrained=True, delaunay=True,
                                                                        a='0.00003', o=2)
#**Create** geometry using triangulation parameters. Geometry can be imported from .msh files.
geometry = Delaunay(vertices, params)

#Save geometry to .json file
geometry.exportJSON('I_test.json')

#Create torsional 2D analysis.
O = Torsion2D(geometry, G, phi)
#Solve the equation in domain.
#Post process and show results
O.solve()
plt.show()

Example with geometry file (Example 2):

import matplotlib.pyplot as plt #Import libraries
from FEM.Torsion2D import Torsion2D #import AFEM
from FEM.Geometry import Geometry #Import Geometry tools

#Define material constants.
E = 200000
v = 0.27
G = E / (2 * (1 + v))
phi = 1 #Rotation angle

#Load geometry with file.
geometry = Geometry.importJSON('I_test.json')

#Create torsional 2D analysis.
O = Torsion2D(geometry, G, phi)
#Solve the equation in domain.
#Post process and show results
O.solve()
plt.show()

Creating equation classes

Note: Don't forget the docstring!

Steps

  1. Create a Python flie and import the libraries:

    from .Core import *
    from tqdm import tqdm
    import numpy as np
    import matplotlib.pyplot as plt
    • Core: Solver
    • Numpy: Numpy data
    • Matplotlib: Matplotlib graphs
    • Tqdm: Progressbars
  2. Create a Python class with Core inheritance

    class PlaneStress(Core):
        def __init__(self,geometry,*args,**kargs):
        #Do stuff
        Core.__init__(self,geometry)

    It is important to manage the number of variables per node in the input geometry.

  3. Define the matrix calculation methods and post porcessing methods.

    def elementMatrices(self):
    def postProcess(self):
  4. The elementMatrices method uses gauss integration points, so you must use the following structure:

    for e in tqdm(self.elements,unit='Element'):
        _x,_p = e.T(e.Z.T) #Gauss points in global coordinates and Shape functions evaluated in gauss points
        jac,dpz = e.J(e.Z.T) #Jacobian evaluated in gauss points and shape functions derivatives in natural coordinates
        detjac = np.linalg.det(jac)
        _j = np.linalg.inv(jac) #Jacobian inverse
        dpx = _j @ dpz #Shape function derivatives in global coordinates
        for k in range(len(e.Z)): #Iterate over gauss points on domain
            #Calculate matrices with any finite element model
        #Assign matrices to element

A good example is the PlaneStress class in the Elasticity2D.py file.

Roadmap

  1. 2D elastic plate theory
  2. Transient analysis (Core modification)
  3. Non-Lineal for 2D equation (All cases)
  4. Testing and numerical validation (WIP)

Example index:

  • Example 1: Preliminar geometry test

  • Example 2: 2D Torsion 1 variable per node. H section-Triangular Quadratic.

  • Example 3: 2D Torsion 1 variable per node. Square section-Triangular Quadratic.

  • Example 4: 2D Torsion 1 variable per node. Mesh from internet-Square Lineal.

  • Example 5: 2D Torsion 1 variable per node. Creating and saving mesh-Triangular Quadratic.

  • Example 6: 1D random differential equation 1 variable per node. Linear Quadratic.

  • Example 7: GiD Mesh import test — Serendipity elements

  • Example 8: Plane Stress 2 variable per node. Plate in tension — Serendipity.

  • Example 9: Plane Stress 2 variable per node. Simple Supported Beam — Serendipity.

  • Example 10: Plane Stress 2 variable per node. Cantilever Beam — Triangular Quadratic.

  • Example 11: Plane Stress 2 variable per node. Fixed-Fixed Beam — Serendipity.

  • Example 12: Plane Strain 2 variable per node. Embankment from GiD — Serendipity.

  • Example 13: Plane Strain 2 variable per node. Embankment — Triangular Quadratic.

  • Example 14: Plane Stress 2 variable per node. Cantilever Beam — Serendipity.

  • Example 15: Profile creation tool. Same as Example 14

  • Example 16: Non-Local Plane Stress. [WIP]

  • Example 17: 1D Heat transfer.

  • Example 18: 2D border elements creation.

  • Example 19: Apply loads on regions. loadOnRegion method on Test 11

  • Example 20: Reddy's Example 11.7.1 Ed 3

  • Example 21: Example 20 with serendipity elements.

  • Example 22: Example 20 with refined mesh.

  • Example 23: Reddy's Problem 11.1 Ed 3 Plain Strain

  • Example 24: Example 23 with refined mesh

  • Example 25: Holes concept. With Example 24

  • Example 26: Fillets concept.

  • Example 27: Combination of Holes Fillets, Plane Stress

  • Example 28: Fillets and Holes mesh files of Example 27

  • Example 29: Fillets and Holes in Example 13

  • Example 30: Border conditions and loads in holes

  • Example 31: 2D Heat with convective borders

  • Example 32: Border conditions and loads in holes

  • Example 33: Example 30 with Heat

  • Example 34: Custom plots, Beam-Girder steel plate connection

  • Example 35: Torsion with fillets

  • Example 36: Convective Heat Transfer from Samson-Mano's software

  • Example 37: Convective Heat Transfer from Samson-Mano's software

  • Example 38: Elements with different properties: Torsion with holes

  • Example 37: Elements with different properties: Torsion with holes Symetrical

  • Example 38 & 39: Polar moment of inertia for hollow sections

  • Example 40 & 41: Euler Bernoulli beams, linear and non-linear

  • Example 42: Non-linear equation solver test

  • Example 43: Orthotripic plane stress

  • Example 44: MeshingNet data creation code

References

J. N. Reddy. Introduction to the Finite Element Method, Third Edition (McGraw-Hill Education: New York, Chicago, San Francisco, Athens, London, Madrid, Mexico City, Milan, New Delhi, Singapore, Sydney, Toronto, 2006). https://www.accessengineeringlibrary.com/content/book/9780072466850

Jonathan Richard Shewchuk, (1996) Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator

Ramirez, F. (2020). ICYA 4414 Modelación con Elementos Finitos [Class handout]. Universidad de Los Andes.

License

MIT