Skip to content

ZhoupingWang/Multi-Skeleton_based_Graph_Convolution

Repository files navigation

Multi-Skeleton based Graph convolution

Dependencies

  • Python >= 3.6
  • PyTorch >= 1.2.0
  • NVIDIA Apex (auto mixed precision training)
  • PyYAML, tqdm, tensorboardX

NTU RGB+D 60

  1. Request dataset here: http://rose1.ntu.edu.sg/Datasets/actionRecognition.asp

  2. Download the skeleton-only datasets:

    • nturgbd_skeletons_s001_to_s017.zip (NTU RGB+D 60)
  3. Download missing skeletons lookup files from the authors' GitHub repo:

    • NTU RGB+D 60 Missing Skeletons: wget https://raw.githubusercontent.com/shahroudy/NTURGB-D/master/Matlab/NTU_RGBD_samples_with_missing_skeletons.txt

    • Remember to remove the first few lines of text in these files!

Data Preprocessing

Directory Structure

Put downloaded data into the following directory structure:

- data/
  - nturgbd_raw/
    - nturgb+d_skeletons/     # from `nturgbd_skeletons_s001_to_s017.zip`
      ...
    - nturgb+d_skeletons120/  # from `nturgbd_skeletons_s018_to_s032.zip`
      ...
    - NTU_RGBD_samples_with_missing_skeletons.txt
    - NTU_RGBD120_samples_with_missing_skeletons.txt

Generating Data

  1. NTU RGB+D

    • cd data_gen
    • python3 ntu_gendata.py
    • Time estimate is ~ 3hrs to generate NTU 120 on a single core (feel free to parallelize the code :))
  2. Generate the bone data with:

    • python gen_bone_data.py --dataset ntu
  3. Data description:

    • These files are raw data, without normalization and repetition, and only first person.
    • Action: 11-20
    • Camera view: [3]
    • Sample number: 2207/908
    • Data form: dict [[dict_keys(['joints']), ['C1', 'BL', ... 'RF', 'RB']],[dict_keys(['S017C003P007R002A012.skeleton']), data[frames-variable,joints-25,xyz-3]],............]

Training & Testing

  • The general training template command:
python main.py --config ./config/nturgbd-cross-subject/train_joint.yaml --work-dir ./work_dir/ntu/xsub/msg3d_joint
  • The general testing template command:
python main.py --config ./config/nturgbd-cross-subject/test_joint.yaml --work-dir work_dir/ntu/xsub/msg3d_joint_val --weights work_dir/ntu/xsub/msg3d_joint/weights/weights-50-10400.pt

Contact

Please email wang.zhoup@northeastern.edu or zhu.shaot@northeastern.edu for further questions

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published