Skip to content

Z1hanW/tapnet

 
 

Repository files navigation

CRISP-Real2Sim

CRISP-Real2Sim contains the complete pipeline we use to turn in-the-wild video into human-scene reconstructions and downstream controllers. The steps below walk you through cloning the repo, setting up the environment, downloading the required assets, and running the provided scripts.


1. Repository Setup

git clone --recursive https://github.com/Z1hanW/CRISP-Real2Sim.git
cd CRISP-Real2Sim

Create and Activate the Conda Environment

conda create -n crisp python=3.10 -y
conda activate crisp

Install PyTorch (CUDA 12.4 build)

pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 "xformers>=0.0.27" \
  --index-url https://download.pytorch.org/whl/cu124
pip install torch-scatter -f https://data.pyg.org/whl/torch-2.4.1+cu124.html
pip install -r requirements.txt

If you encounter compilation errors (usually on pytorch3d or CUDA extensions), install a compatible compiler toolchain: conda install -c conda-forge gxx_linux-64=11.

Extra Installation Scripts

Some dependencies (for rendering, viewers, etc.) are wrapped in helper scripts inside prep/:

cd prep
sh install*
cd ..

2. Download Assets and Data

  1. SMPL/SMPL-X body models (required for rendering and evaluation)
    • Register at SMPL and SMPL-X.
    • Place the downloaded .pkl files using the structure below.
prep/data/
└── body_models/
    ├── smpl/SMPL_{GENDER}.pkl
    └── smplx/SMPLX_{GENDER}.pkl
  1. Demo videos and metadata
mkdir -p data
gdown --folder "https://drive.google.com/drive/folders/1k712Oj9StmWXRzSeSMiHZc3LtvsVk2Rw" -O data

gdown is installed via requirements.txt. Use the -O data flag so Google Drive folders land under CRISP-Real2Sim/data.


3. Run the Full Pipeline

The scripts expect your source sequences to live under either *_videos or *_img folders. Remove that suffix when you feed paths to the scripts.

data/
├── demo_videos/
│   └── walk-kicking/        # example sequence
└── YOUR_videos/
    ├── seq_a/
    └── seq_b/
sh all_gv.sh /path/to/data/demo        # not /path/to/data/demo_videos
  • The script will iterate through every *_videos (or *_img) folder under the path you supply.
  • Intermediate data, meshes, and evaluations are written back into the respective sequence directories.

4. Visualize Human–Scene Reconstructions

sh vis.sh ${SEQ_NAME}

Common flags (see script header for the full list):

  • --scene_name: override the scene used for rendering.
  • --data_root: custom data directory if not ./data.
  • --out_dir: write visualizations to a different folder.

5. Train Your Agent

Training utilities are still stabilizing. The current repo contains placeholder scripts under agents/:

  • Review agents/README.md for the most recent instructions.
  • Ensure the dataset generated in Section 3 is available before launching training.
  • We recommend starting with a small subset (--subset N) to validate your setup before scaling.

6. Visualize Your Agent

Agent visualization builds on the same vis.sh infrastructure:

python agents/vis_agent.py \
  --checkpoint path/to/checkpoint.pt \
  --seq ${SEQ_NAME} \
  --out_dir outputs/agent_viz/${SEQ_NAME}

Pass --scene_name or --camera_pose_file if your controller requires a custom scene or camera path.

About

Tracking Any Point (TAP)

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 81.6%
  • Jupyter Notebook 18.4%