forked from BlinkDL/RWKV-CUDA
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
189 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,184 @@ | ||
#include <stdio.h> | ||
#include <assert.h> | ||
#include "ATen/ATen.h" | ||
typedef at::BFloat16 bf16; | ||
|
||
template <typename F> | ||
__global__ void kernel_forward(const int B, const int T, const int C, const int H, | ||
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u, | ||
F *__restrict__ const _y) | ||
{ | ||
const int b = blockIdx.x / H; | ||
const int h = blockIdx.x % H; | ||
const int i = threadIdx.x; | ||
_w += h*_N_; | ||
_u += h*_N_; | ||
|
||
__shared__ float r[_N_], k[_N_], u[_N_]; | ||
float state[_N_] = {0}; | ||
|
||
__syncthreads(); | ||
u[i] = float(_u[i]); | ||
__syncthreads(); | ||
|
||
for (int t = b*T*C + h*_N_ + i; t < (b+1)*T*C + h*_N_ + i; t += C) | ||
{ | ||
__syncthreads(); | ||
r[i] = float(_r[t]); | ||
k[i] = float(_k[t]); | ||
__syncthreads(); | ||
|
||
const float v = float(_v[t]); | ||
float y = 0; | ||
|
||
#pragma unroll | ||
for (int j = 0; j < _N_; j+=4) | ||
{ | ||
const float4& r_ = (float4&)(r[j]); | ||
const float4& k_ = (float4&)(k[j]); | ||
const float4& w_ = (float4&)(_w[j]); | ||
const float4& u_ = (float4&)(u[j]); | ||
float4& s = (float4&)(state[j]); | ||
float4 x; | ||
|
||
x.x = k_.x * v; | ||
x.y = k_.y * v; | ||
x.z = k_.z * v; | ||
x.w = k_.w * v; | ||
|
||
y += r_.x * (u_.x * x.x + s.x); | ||
y += r_.y * (u_.y * x.y + s.y); | ||
y += r_.z * (u_.z * x.z + s.z); | ||
y += r_.w * (u_.w * x.w + s.w); | ||
|
||
s.x = s.x * w_.x + x.x; | ||
s.y = s.y * w_.y + x.y; | ||
s.z = s.z * w_.z + x.z; | ||
s.w = s.w * w_.w + x.w; | ||
} | ||
_y[t] = F(y); | ||
} | ||
} | ||
|
||
template <typename F> | ||
__global__ void kernel_backward(const int B, const int T, const int C, const int H, | ||
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const float *__restrict__ __w, const F *__restrict__ _u, const F *__restrict__ const _gy, | ||
F *__restrict__ const _gr, F *__restrict__ const _gk, F *__restrict__ const _gv, F *__restrict__ const _gw, F *__restrict__ const _gu) | ||
{ | ||
const int b = blockIdx.x / H; | ||
const int h = blockIdx.x % H; | ||
const int i = threadIdx.x; | ||
_w += h*_N_; | ||
_u += h*_N_; | ||
__w += h*_N_; | ||
const float w = _w[i]; | ||
const float u = float(_u[i]); | ||
const float ww = __w[i]; | ||
|
||
__shared__ float v[_N_], r[_N_], k[_N_], gy[_N_], w_[_N_], u_[_N_]; | ||
float state[_N_] = {0}, saaaa[_N_] = {0}, sbbbb[_N_] = {0}; | ||
|
||
float gw = 0, gu = 0; | ||
const int t000 = b*T*C + h*_N_ + i; | ||
const int t111 = (b+1)*T*C + h*_N_ + i; | ||
const int t222 = t111 - 2*C; | ||
|
||
for (int _t = t000; _t < t111; _t += C) | ||
{ | ||
__syncthreads(); | ||
v[i] = float(_v[_t]); | ||
gy[i] = float(_gy[_t]); | ||
__syncthreads(); | ||
|
||
const float k = float(_k[_t]); | ||
const float r = float(_r[_t]); | ||
|
||
float gr = 0; | ||
|
||
#pragma unroll | ||
for (int j = 0; j < _N_; j++) | ||
{ | ||
float x = v[j] * k; | ||
float& s = state[j]; | ||
|
||
gr += gy[j] * (u * x + s); | ||
gu += r * x * gy[j]; | ||
s = s * w + x; | ||
} | ||
_gr[_t] = F(gr); | ||
} | ||
_gu[b*C + h*_N_ + i] = F(gu); | ||
|
||
for (int _t = t000; _t < t222; _t += C) | ||
{ | ||
__syncthreads(); | ||
v[i] = float(_v[_t]); | ||
gy[i] = float(_gy[_t + 2*C]); | ||
__syncthreads(); | ||
|
||
const float k = float(_k[_t]); | ||
const float r = float(_r[_t + 2*C]); | ||
|
||
#pragma unroll | ||
for (int j = 0; j < _N_; j++) | ||
{ | ||
float x = v[j] * k; | ||
saaaa[j] = w * (saaaa[j] + sbbbb[j] + x); | ||
sbbbb[j] = w * (sbbbb[j] + x); | ||
|
||
gw += r * ww * saaaa[j] * gy[j]; | ||
} | ||
} | ||
_gw[b*C + h*_N_ + i] = F(gw); | ||
|
||
#pragma unroll | ||
for (int j = 0; j < _N_; ++j) { | ||
saaaa[j] = 0; | ||
sbbbb[j] = 0; | ||
} | ||
|
||
__syncthreads(); | ||
w_[i] = _w[i]; | ||
u_[i] = float(_u[i]); | ||
__syncthreads(); | ||
|
||
for (int _t = t111 - C; _t >= t000; _t -= C) | ||
{ | ||
__syncthreads(); | ||
r[i] = float(_r[_t]); | ||
k[i] = float(_k[_t]); | ||
v[i] = float(_v[_t]); | ||
gy[i] = float(_gy[_t]); | ||
__syncthreads(); | ||
|
||
float gk = 0, gv = 0; | ||
|
||
#pragma unroll | ||
for (int j = 0; j < _N_; j++) | ||
{ | ||
float x = gy[j] * r[i]; | ||
float& s = saaaa[j]; | ||
gk += v[j] * (u * x + s); | ||
s = s * w + x; | ||
|
||
float x2 = gy[i] * r[j]; | ||
float& s2 = sbbbb[j]; | ||
gv += k[j] * (u_[j] * x2 + s2); | ||
s2 = s2 * w_[j] + x2; | ||
} | ||
_gk[_t] = F(gk); | ||
_gv[_t] = F(gv); | ||
} | ||
} | ||
|
||
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y) | ||
{ | ||
assert(H*_N_ == C); | ||
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, y); | ||
} | ||
|
||
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, float *ww, bf16 *u, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu) | ||
{ | ||
assert(H*_N_ == C); | ||
kernel_backward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, ww, u, gy, gr, gk, gv, gw, gu); | ||
} |