Skip to content

YanchengWang/RegNet-Search-PyTorch

 
 

Repository files navigation

Search-RegNet-PyTorch

Implemention for neural architecture search of RegNet using PyTorch and AutoTorch.

This example and Fast AutoAugment will be used in the tutorial on From HPO to NAS: Automated Deep Learning at CVPR 2020.

model ref Acc config
RegNet-0.4GF official 72.38 link
RegNet-0.4GF ours 72.18 link
RegNet-4.0GF official 79.03 link

official: using official configuration. ours: using our searched configuration.

Training HP setting: learning rate: 0.2, batch size: 512, weight decay: 1e-4,

Quick Start

Install Dependencies

  • Install PyTorch, following the instruction.
  • Install other dependencies:
pip install autotorch thop torch-encoding
  • Install Apex (optional):
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Test #Params and FLOPs from config file

python test_flops.py --config-file configs/RegNetX-4.0GF.ini

Single Model Training

Prepare ImageNet Dataset

cd scripts/
# assuming you have downloaded the dataset in the current folder
python prepare_imagenet.py --download-dir ./

Train a single model from a config file

python train.py --dataset imagenet --config-file configs/RegNetX-4.0GF.ini --lr-scheduler cos --epochs 120 --checkname default --lr 0.025 --batch-size 64 --amp

Architecture Search

Generate config files with expected GFLOPs

python generate_configs.py --gflops 4 --num-configs 32 --config-file configs/RegNetX-4.0GF

The generated configuration files will be saved as configs/RegNetX-4.0GF-1.ini, configs/RegNetX-4.0GF-2.ini ...

Search best model for the config files in a folder

In this example, each model will be trained using a single gpu for 25 epochs.

python search.py --config-file-folder gen_configs/RegNet-0.4GF/ --output-folder out_configs/ --epochs 25

The accuracy will be written into the output config file after training.

About

Search for RegNet using PyTorch

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%