| Model | Backbone | MS | Rotate | Lr schd | Download |
|---|---|---|---|---|---|
| PARDet | R-50-FPN | - | - | 1x | BaiduNetDisk[5xn6] |
| PARDet_ATSS | R-50-FPN | - | - | 1x | BaiduNetDisk[p4os] |
create virtual environment
conda create -n pardet python=3.8 -y
conda activate pardet
install pytorch
pip3 install torch==1.7.0+cu101 torchvision==0.8.1+cu101 -f https://download.pytorch.org/whl/torch_stable.html
manually install mmdetection/mmcv
pip install mmcv-full==1.2.5 -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.7.0/index.html
cd pardet
pip install -r requirements/build.txt
pip install -v -e . # or "python setup.py develop"
Install DOTA_devkit
cd DOTA_devkit
sudo apt-get install swig
swig -c++ -python polyiou.i
python setup.py build_ext --inplace
CUDA_VISIBLE_DEVICES=1 python tools/train.py configs/PARDet/pardet_r50_fpn_1x.py
CUDA_VISIBLE_DEVICES=1 python tools/test.py {configs} {ckpt_path} --out {pkl_path}
etc.
CUDA_VISIBLE_DEVICES=1 python tools/test.py configs/PARDet/pardet_r50_fpn_1x.py /data/Aerial/checkpoints/paper/pardet/sift_point_num20_con_4/epoch_12.pth --out /data/Aerial/checkpoints/paper/pardet/sift_point_num20_con_4/results.pkl
python tools/rotate/parse_results.py {configs} {pkl_path}
-[nms]
--[type]
--[eval]
- configs:the model config you design
- pkl:model inference result
- nms:whether to merge result [Y/N]
- type:if you want to merge, merge rotate or horizon [HBB/OBB/ALL]
- eval: whether to eval result
etc.
python tools/rotate/parse_results.py configs/PARDet/pardet_r50_fpn_1x.py /data/Aerial/checkpoints/paper/pardet/sift_point_num20_con_4/results.pkl Y --eval=N
@article{xu2024pardet,
title={PARDet: Dynamic point set alignment for rotated object detection},
author={Xu, Yihao and Shen, Jifeng and Dai, Ming and Yang, Wankou},
journal={Pattern Recognition},
pages={110534},
year={2024},
publisher={Elsevier}
}
