Skip to content

Commit

Permalink
[example] update
Browse files Browse the repository at this point in the history
  • Loading branch information
mli committed Nov 18, 2015
1 parent 29546a5 commit ee6699d
Show file tree
Hide file tree
Showing 8 changed files with 298 additions and 8 deletions.
3 changes: 3 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,7 @@ tracker
.ycm_extra_conf.pyc

# Emacs
.#*
.clang_complete
.dir-locals.el
__pycache__
Expand All @@ -76,3 +77,5 @@ R-package/inst/*
*.rec
*.lst
*.zip
*ubyte
*.bin
22 changes: 17 additions & 5 deletions example/image-classification/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,15 +9,27 @@ width=400/>
## How to use

- First build mxnet by following the [guide](http://mxnet.readthedocs.org/en/latest/build.html)
- [network](network/) contains various neural networks
- Other directories, e.g.~[mnist](mnist/), contain programs to train models on a
particular dataset. e.g.

- Use `train_dataset.py` to training models on various dataset. For example,
train a MLP on mnist

```bash
python train_mnist.py
```

or train a convetnet on mnist using GPU 0

```bash
python train_mnist.py --network lenet --gpus 0
```

See more options

```bash
cd mnist; python train_lenet.py
python train_mnist.py --help
```

- pre-trained models are also provided.
- Pre-trained models are also provided.

## More

Expand Down
4 changes: 2 additions & 2 deletions example/image-classification/alexnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
import find_mxnet
import mxnet as mx

def get_symbol(num_label = 1000):
def get_symbol(num_classes = 1000):
input_data = mx.symbol.Variable(name="data")
# stage 1
conv1 = mx.symbol.Convolution(
Expand Down Expand Up @@ -42,6 +42,6 @@ def get_symbol(num_label = 1000):
relu7 = mx.symbol.Activation(data=fc2, act_type="relu")
dropout2 = mx.symbol.Dropout(data=relu7, p=0.5)
# stage 6
fc3 = mx.symbol.FullyConnected(data=dropout2, num_hidden=num_label)
fc3 = mx.symbol.FullyConnected(data=dropout2, num_hidden=num_classes)
softmax = mx.symbol.SoftmaxOutput(data=fc3, name='softmax')
return softmax
56 changes: 56 additions & 0 deletions example/image-classification/googlenet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
"""References:
Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper
with convolutions." arXiv preprint arXiv:1409.4842 (2014).
"""

import find_mxnet
import mxnet as mx

def ConvFactory(data, num_filter, kernel, stride=(1,1), pad=(0, 0), name=None, suffix=''):
conv = mx.symbol.Convolution(data=data, num_filter=num_filter, kernel=kernel, stride=stride, pad=pad, name='conv_%s%s' %(name, suffix))
act = mx.symbol.Activation(data=conv, act_type='relu', name='relu_%s%s' %(name, suffix))
return act

def InceptionFactory(data, num_1x1, num_3x3red, num_3x3, num_d5x5red, num_d5x5, pool, proj, name):
# 1x1
c1x1 = ConvFactory(data=data, num_filter=num_1x1, kernel=(1, 1), name=('%s_1x1' % name))
# 3x3 reduce + 3x3
c3x3r = ConvFactory(data=data, num_filter=num_3x3red, kernel=(1, 1), name=('%s_3x3' % name), suffix='_reduce')
c3x3 = ConvFactory(data=c3x3r, num_filter=num_3x3, kernel=(3, 3), pad=(1, 1), name=('%s_3x3' % name))
# double 3x3 reduce + double 3x3
cd5x5r = ConvFactory(data=data, num_filter=num_d5x5red, kernel=(1, 1), name=('%s_double_3x3' % name), suffix='_reduce')
cd5x5 = ConvFactory(data=cd5x5r, num_filter=num_d5x5, kernel=(3, 3), pad=(1, 1), name=('%s_double_3x3_1' % name))
# pool + proj
pooling = mx.symbol.Pooling(data=data, kernel=(3, 3), stride=(1, 1), pad=(1, 1), pool_type=pool, name=('%s_pool_%s_pool' % (pool, name)))
cproj = ConvFactory(data=pooling, num_filter=proj, kernel=(1, 1), name=('%s_proj' % name))
# concat
concat = mx.symbol.Concat(*[c1x1, c3x3, cd5x5, cproj], name='ch_concat_%s_chconcat' % name)
return concat

def get_symbol(num_classes = 1000):
data = mx.sym.Variable("data")
conv1 = ConvFactory(data, 64, kernel=(7, 7), stride=(2,2), pad=(3, 3))
pool1 = mx.sym.Pooling(conv1, kernel=(3, 3), stride=(2, 2), pool_type="max")
conv2 = ConvFactory(pool1, 64, kernel=(1, 1), stride=(1,1))
conv3 = ConvFactory(conv2, 192, kernel=(3, 3), stride=(1, 1), pad=(1,1))
pool3 = mx.sym.Pooling(conv3, kernel=(3, 3), stride=(2, 2), pool_type="max")

in3a = InceptionFactory(pool3, 64, 96, 128, 16, 32, "max", 32, name="in3a")
in3b = InceptionFactory(in3a, 128, 128, 192, 32, 96, "max", 64, name="in3b")
pool4 = mx.sym.Pooling(in3b, kernel=(3, 3), stride=(2, 2), pool_type="max")
in4a = InceptionFactory(pool4, 192, 96, 208, 16, 48, "max", 64, name="in4a")
in4b = InceptionFactory(in4a, 160, 112, 224, 24, 64, "max", 64, name="in4b")
in4c = InceptionFactory(in4b, 128, 128, 256, 24, 64, "max", 64, name="in4c")
in4d = InceptionFactory(in4c, 112, 144, 288, 32, 64, "max", 64, name="in4d")
in4e = InceptionFactory(in4d, 256, 160, 320, 32, 128, "max", 128, name="in4e")
pool5 = mx.sym.Pooling(in4e, kernel=(3, 3), stride=(2, 2), pool_type="max")
in5a = InceptionFactory(pool5, 256, 160, 320, 32, 128, "max", 128, name="in5a")
in5b = InceptionFactory(in5a, 384, 192, 384, 48, 128, "max", 128, name="in5b")
pool6 = mx.sym.Pooling(in5b, kernel=(7, 7), stride=(1,1), pool_type="avg")
flatten = mx.sym.Flatten(data=pool6)
fc1 = mx.sym.FullyConnected(data=flatten, num_hidden=num_classes)
softmax = mx.symbol.SoftmaxOutput(data=fc1, name='softmax')
return softmax
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
"""
Inception + Batch normalization. suitable for images has size 28 x 28
simplified inception-bn.py for images has size around 28 x 28
"""

import find_mxnet
import mxnet as mx

Expand Down
74 changes: 74 additions & 0 deletions example/image-classification/inception-bn-full.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
"""
An variant of inception-bn.py for the full imagenet dataset with >= 21841 classes
"""

import find_mxnet
import mxnet as mx

def ConvFactory(data, num_filter, kernel, stride=(1,1), pad=(0, 0), name=None, suffix=''):
conv = mx.symbol.Convolution(data=data, workspace=512, num_filter=num_filter, kernel=kernel, stride=stride, pad=pad, name='conv_%s%s' %(name, suffix))
bn = mx.symbol.BatchNorm(data=conv, name='bn_%s%s' %(name, suffix))
act = mx.symbol.Activation(data=bn, act_type='relu', name='relu_%s%s' %(name, suffix))
return act

def InceptionFactoryA(data, num_1x1, num_3x3red, num_3x3, num_d3x3red, num_d3x3, pool, proj, name):
# 1x1
c1x1 = ConvFactory(data=data, num_filter=num_1x1, kernel=(1, 1), name=('%s_1x1' % name))
# 3x3 reduce + 3x3
c3x3r = ConvFactory(data=data, num_filter=num_3x3red, kernel=(1, 1), name=('%s_3x3' % name), suffix='_reduce')
c3x3 = ConvFactory(data=c3x3r, num_filter=num_3x3, kernel=(3, 3), pad=(1, 1), name=('%s_3x3' % name))
# double 3x3 reduce + double 3x3
cd3x3r = ConvFactory(data=data, num_filter=num_d3x3red, kernel=(1, 1), name=('%s_double_3x3' % name), suffix='_reduce')
cd3x3 = ConvFactory(data=cd3x3r, num_filter=num_d3x3, kernel=(3, 3), pad=(1, 1), name=('%s_double_3x3_0' % name))
cd3x3 = ConvFactory(data=cd3x3, num_filter=num_d3x3, kernel=(3, 3), pad=(1, 1), name=('%s_double_3x3_1' % name))
# pool + proj
pooling = mx.symbol.Pooling(data=data, kernel=(3, 3), stride=(1, 1), pad=(1, 1), pool_type=pool, name=('%s_pool_%s_pool' % (pool, name)))
cproj = ConvFactory(data=pooling, num_filter=proj, kernel=(1, 1), name=('%s_proj' % name))
# concat
concat = mx.symbol.Concat(*[c1x1, c3x3, cd3x3, cproj], name='ch_concat_%s_chconcat' % name)
return concat

def InceptionFactoryB(data, num_3x3red, num_3x3, num_d3x3red, num_d3x3, name):
# 3x3 reduce + 3x3
c3x3r = ConvFactory(data=data, num_filter=num_3x3red, kernel=(1, 1), name=('%s_3x3' % name), suffix='_reduce')
c3x3 = ConvFactory(data=c3x3r, num_filter=num_3x3, kernel=(3, 3), pad=(1, 1), stride=(2, 2), name=('%s_3x3' % name))
# double 3x3 reduce + double 3x3
cd3x3r = ConvFactory(data=data, num_filter=num_d3x3red, kernel=(1, 1), name=('%s_double_3x3' % name), suffix='_reduce')
cd3x3 = ConvFactory(data=cd3x3r, num_filter=num_d3x3, kernel=(3, 3), pad=(1, 1), stride=(1, 1), name=('%s_double_3x3_0' % name))
cd3x3 = ConvFactory(data=cd3x3, num_filter=num_d3x3, kernel=(3, 3), pad=(1, 1), stride=(2, 2), name=('%s_double_3x3_1' % name))
# pool + proj
pooling = mx.symbol.Pooling(data=data, kernel=(3, 3), stride=(2, 2), pool_type="max", name=('max_pool_%s_pool' % name))
# concat
concat = mx.symbol.Concat(*[c3x3, cd3x3, pooling], name='ch_concat_%s_chconcat' % name)
return concat

def inception(num_classes = 21841):
# data
data = mx.symbol.Variable(name="data")
# stage 1
conv1 = ConvFactory(data=data, num_filter=96, kernel=(7, 7), stride=(2, 2), pad=(3, 3), name='conv1')
pool1 = mx.symbol.Pooling(data=conv1, kernel=(3, 3), stride=(2, 2), name='pool1', pool_type='max')
# stage 2
conv2red = ConvFactory(data=pool1, num_filter=128, kernel=(1, 1), stride=(1, 1), name='conv2red')
conv2 = ConvFactory(data=conv2red, num_filter=288, kernel=(3, 3), stride=(1, 1), pad=(1, 1), name='conv2')
pool2 = mx.symbol.Pooling(data=conv2, kernel=(3, 3), stride=(2, 2), name='pool2', pool_type='max')
# stage 2
in3a = InceptionFactoryA(pool2, 96, 96, 96, 96, 144, "avg", 48, '3a')
in3b = InceptionFactoryA(in3a, 96, 96, 144, 96, 144, "avg", 96, '3b')
in3c = InceptionFactoryB(in3b, 192, 240, 96, 144, '3c')
# stage 3
in4a = InceptionFactoryA(in3c, 224, 64, 96, 96, 128, "avg", 128, '4a')
in4b = InceptionFactoryA(in4a, 192, 96, 128, 96, 128, "avg", 128, '4b')
in4c = InceptionFactoryA(in4b, 160, 128, 160, 128, 160, "avg", 128, '4c')
in4d = InceptionFactoryA(in4c, 96, 128, 192, 160, 96, "avg", 128, '4d')
in4e = InceptionFactoryB(in4d, 128, 192, 192, 256, '4e')
# stage 4
in5a = InceptionFactoryA(in4e, 352, 192, 320, 160, 224, "avg", 128, '5a')
in5b = InceptionFactoryA(in5a, 352, 192, 320, 192, 224, "max", 128, '5b')
# global avg pooling
avg = mx.symbol.Pooling(data=in5b, kernel=(7, 7), stride=(1, 1), name="global_pool", pool_type='avg')
# linear classifier
flatten = mx.symbol.Flatten(data=avg, name='flatten')
fc1 = mx.symbol.FullyConnected(data=flatten, num_hidden=num_classes, name='fc1')
softmax = mx.symbol.SoftmaxOutput(data=fc1, name='softmax')
return softmax
82 changes: 82 additions & 0 deletions example/image-classification/inception-bn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
"""
Inception + BN, suitable for images with around 224 x 224
Reference:
Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.
"""

import find_mxnet
import mxnet as mx

def ConvFactory(data, num_filter, kernel, stride=(1,1), pad=(0, 0), name=None, suffix=''):
conv = mx.symbol.Convolution(data=data, num_filter=num_filter, kernel=kernel, stride=stride, pad=pad, name='conv_%s%s' %(name, suffix))
bn = mx.symbol.BatchNorm(data=conv, name='bn_%s%s' %(name, suffix))
act = mx.symbol.Activation(data=bn, act_type='relu', name='relu_%s%s' %(name, suffix))
return act

def InceptionFactoryA(data, num_1x1, num_3x3red, num_3x3, num_d3x3red, num_d3x3, pool, proj, name):
# 1x1
c1x1 = ConvFactory(data=data, num_filter=num_1x1, kernel=(1, 1), name=('%s_1x1' % name))
# 3x3 reduce + 3x3
c3x3r = ConvFactory(data=data, num_filter=num_3x3red, kernel=(1, 1), name=('%s_3x3' % name), suffix='_reduce')
c3x3 = ConvFactory(data=c3x3r, num_filter=num_3x3, kernel=(3, 3), pad=(1, 1), name=('%s_3x3' % name))
# double 3x3 reduce + double 3x3
cd3x3r = ConvFactory(data=data, num_filter=num_d3x3red, kernel=(1, 1), name=('%s_double_3x3' % name), suffix='_reduce')
cd3x3 = ConvFactory(data=cd3x3r, num_filter=num_d3x3, kernel=(3, 3), pad=(1, 1), name=('%s_double_3x3_0' % name))
cd3x3 = ConvFactory(data=cd3x3, num_filter=num_d3x3, kernel=(3, 3), pad=(1, 1), name=('%s_double_3x3_1' % name))
# pool + proj
pooling = mx.symbol.Pooling(data=data, kernel=(3, 3), stride=(1, 1), pad=(1, 1), pool_type=pool, name=('%s_pool_%s_pool' % (pool, name)))
cproj = ConvFactory(data=pooling, num_filter=proj, kernel=(1, 1), name=('%s_proj' % name))
# concat
concat = mx.symbol.Concat(*[c1x1, c3x3, cd3x3, cproj], name='ch_concat_%s_chconcat' % name)
return concat

def InceptionFactoryB(data, num_3x3red, num_3x3, num_d3x3red, num_d3x3, name):
# 3x3 reduce + 3x3
c3x3r = ConvFactory(data=data, num_filter=num_3x3red, kernel=(1, 1), name=('%s_3x3' % name), suffix='_reduce')
c3x3 = ConvFactory(data=c3x3r, num_filter=num_3x3, kernel=(3, 3), pad=(1, 1), stride=(2, 2), name=('%s_3x3' % name))
# double 3x3 reduce + double 3x3
cd3x3r = ConvFactory(data=data, num_filter=num_d3x3red, kernel=(1, 1), name=('%s_double_3x3' % name), suffix='_reduce')
cd3x3 = ConvFactory(data=cd3x3r, num_filter=num_d3x3, kernel=(3, 3), pad=(1, 1), stride=(1, 1), name=('%s_double_3x3_0' % name))
cd3x3 = ConvFactory(data=cd3x3, num_filter=num_d3x3, kernel=(3, 3), pad=(1, 1), stride=(2, 2), name=('%s_double_3x3_1' % name))
# pool + proj
pooling = mx.symbol.Pooling(data=data, kernel=(3, 3), stride=(2, 2), pool_type="max", name=('max_pool_%s_pool' % name))
# concat
concat = mx.symbol.Concat(*[c3x3, cd3x3, pooling], name='ch_concat_%s_chconcat' % name)
return concat

def get_symbol(num_classes=1000):
# data
data = mx.symbol.Variable(name="data")
# stage 1
conv1 = ConvFactory(data=data, num_filter=64, kernel=(7, 7), stride=(2, 2), pad=(3, 3), name='conv1')
pool1 = mx.symbol.Pooling(data=conv1, kernel=(3, 3), stride=(2, 2), name='pool1', pool_type='max')
# stage 2
conv2red = ConvFactory(data=pool1, num_filter=64, kernel=(1, 1), stride=(1, 1), name='conv2red')
conv2 = ConvFactory(data=conv2red, num_filter=192, kernel=(3, 3), stride=(1, 1), pad=(1, 1), name='conv2')
pool2 = mx.symbol.Pooling(data=conv2, kernel=(3, 3), stride=(2, 2), name='pool2', pool_type='max')
# stage 2
in3a = InceptionFactoryA(pool2, 64, 64, 64, 64, 96, "avg", 32, '3a')
in3b = InceptionFactoryA(in3a, 64, 64, 96, 64, 96, "avg", 64, '3b')
in3c = InceptionFactoryB(in3b, 128, 160, 64, 96, '3c')
# stage 3
in4a = InceptionFactoryA(in3c, 224, 64, 96, 96, 128, "avg", 128, '4a')
in4b = InceptionFactoryA(in4a, 192, 96, 128, 96, 128, "avg", 128, '4b')
in4c = InceptionFactoryA(in4b, 160, 128, 160, 128, 160, "avg", 128, '4c')
in4d = InceptionFactoryA(in4c, 96, 128, 192, 160, 192, "avg", 128, '4d')
in4e = InceptionFactoryB(in4d, 128, 192, 192, 256, '4e')
# stage 4
in5a = InceptionFactoryA(in4e, 352, 192, 320, 160, 224, "avg", 128, '5a')
in5b = InceptionFactoryA(in5a, 352, 192, 320, 192, 224, "max", 128, '5b')
# global avg pooling
avg = mx.symbol.Pooling(data=in5b, kernel=(7, 7), stride=(1, 1), name="global_pool", pool_type='avg')
# linear classifier
flatten = mx.symbol.Flatten(data=avg, name='flatten')
fc1 = mx.symbol.FullyConnected(data=flatten, num_hidden=num_classes, name='fc1')
softmax = mx.symbol.SoftmaxOutput(data=fc1, name='softmax')
return softmax
62 changes: 62 additions & 0 deletions example/image-classification/vgg.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
"""References:
Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for
large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).
"""
import find_mxnet
import mxnet as mx

def get_symbol(num_classes = 1000):
## define alexnet
data = mx.symbol.Variable(name="data")
# group 1
conv1_1 = mx.symbol.Convolution(data=data, kernel=(3, 3), pad=(1, 1), num_filter=64, name="conv1_1")
relu1_1 = mx.symbol.Activation(data=conv1_1, act_type="relu", name="relu1_1")
pool1 = mx.symbol.Pooling(
data=relu1_1, pool_type="max", kernel=(2, 2), stride=(2,2), name="pool1")
# group 2
conv2_1 = mx.symbol.Convolution(
data=pool1, kernel=(3, 3), pad=(1, 1), num_filter=128, name="conv2_1")
relu2_1 = mx.symbol.Activation(data=conv2_1, act_type="relu", name="relu2_1")
pool2 = mx.symbol.Pooling(
data=relu2_1, pool_type="max", kernel=(2, 2), stride=(2,2), name="pool2")
# group 3
conv3_1 = mx.symbol.Convolution(
data=pool2, kernel=(3, 3), pad=(1, 1), num_filter=256, name="conv3_1")
relu3_1 = mx.symbol.Activation(data=conv3_1, act_type="relu", name="relu3_1")
conv3_2 = mx.symbol.Convolution(
data=relu3_1, kernel=(3, 3), pad=(1, 1), num_filter=256, name="conv3_2")
relu3_2 = mx.symbol.Activation(data=conv3_2, act_type="relu", name="relu3_2")
pool3 = mx.symbol.Pooling(
data=relu3_2, pool_type="max", kernel=(2, 2), stride=(2,2), name="pool3")
# group 4
conv4_1 = mx.symbol.Convolution(
data=pool3, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv4_1")
relu4_1 = mx.symbol.Activation(data=conv4_1, act_type="relu", name="relu4_1")
conv4_2 = mx.symbol.Convolution(
data=relu4_1, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv4_2")
relu4_2 = mx.symbol.Activation(data=conv4_2, act_type="relu", name="relu4_2")
pool4 = mx.symbol.Pooling(
data=relu4_2, pool_type="max", kernel=(2, 2), stride=(2,2), name="pool4")
# group 5
conv5_1 = mx.symbol.Convolution(
data=pool4, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv5_1")
relu5_1 = mx.symbol.Activation(data=conv5_1, act_type="relu", name="relu5_1")
conv5_2 = mx.symbol.Convolution(
data=relu5_1, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv5_2")
relu5_2 = mx.symbol.Activation(data=conv5_2, act_type="relu", name="conv1_2")
pool5 = mx.symbol.Pooling(
data=relu5_2, pool_type="max", kernel=(2, 2), stride=(2,2), name="pool5")
# group 6
flatten = mx.symbol.Flatten(data=pool5, name="flatten")
fc6 = mx.symbol.FullyConnected(data=flatten, num_hidden=4096, name="fc6")
relu6 = mx.symbol.Activation(data=fc6, act_type="relu", name="relu6")
drop6 = mx.symbol.Dropout(data=relu6, p=0.5, name="drop6")
# group 7
fc7 = mx.symbol.FullyConnected(data=drop6, num_hidden=4096, name="fc7")
relu7 = mx.symbol.Activation(data=fc7, act_type="relu", name="relu7")
drop7 = mx.symbol.Dropout(data=relu7, p=0.5, name="drop7")
# output
fc8 = mx.symbol.FullyConnected(data=drop7, num_hidden=num_classes, name="fc8")
softmax = mx.symbol.SoftmaxOutput(data=fc8, name='softmax')
return softmax

0 comments on commit ee6699d

Please sign in to comment.