Skip to content

Xavier-Pan/WSGCN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Weakly-Supervised Image Semantic Segmentation Using Graph Convolutional Networks (ICME 2021)

An Official Pytorch Implementation of WSGCN-I. WSGCN-I is heavily based on [1] and [2].

Project Page: Link

Paper (arXiv): Link

PWC
PWC

Prerequisite

  • Tested on Arch Linux, CUDA9.0, Python3.9, Pytorch 1.8.1, and NVIDIA GTX 1070; Tested on Ubuntu18.04, CUDA11.1, Python3.6, Pytorch 1.8.0, and NVIDIA Tesla V100
  • Python dependencies (scipy, fire, torch, tensorboardX, pillow, torchvision, cython, tqdm, and pydensecrf...)
  • PASCAL VOC 2012 datasets
  • Pre-trained model for IRN

Download the VOC12 dataset

Download the VOC12 augmentation dataset

Download the pre-trained model for IRN

Download the pre-trained model for DeepLabV2

Setup data

Recommended directory structure

├── Data
│   ├── GCN4DeepLab
│   │   ├── Label
│   │   └── Logit
│   ├── IRN4GCN
│   │   ├── AFF_FEATURE
│   │   ├── AFF_MATRIX
│   │   ├── PARTIAL_PSEUDO_LABEL_DN
│   │   ├── PARTIAL_PSEUDO_LABEL_DN_UP
│   │   └── PARTIAL_PSEUDO_LABEL_UP
│   └── VOC12
│       ├── Split_List
│       └── VOC2012
│           ├── Annotations
│           ├── ImageSets
│           │   ├── Action
│           │   ├── Layout
│           │   ├── Main
│           │   └── Segmentation
│           ├── JPEGImages
│           ├── SegmentationClass
│           ├── SegmentationClassAug
│           └── SegmentationObject
├── GCN
│   └── runs
└── IRN
    ├── misc
    ├── net
    ├── result
    │   ├── cam
    │   ├── ins_seg
    │   ├── ir_label
    │   └── sem_seg
    ├── sess
    ├── step
    └── voc12
        └── Split_List

StageI (See train.sh for more details)

./train.sh
cd GCN/
python CRF.py

StageII (Please refer to another github)

Evaluation (See eval.py for more details)

python eval.py

Performance

Note that you may meet the performance fluctuation, which is about 0.5%, in these simplified codes for ordinary machines. This is because of the seed in train.py and -l in train.sh. Specifically, we set a seed for the train.py instead of resetting it for each GCN. For example, the performance of StageI is around 67.7% with -l 1464 in train.sh. In addition, the performance of StageII depends on StageI and the performance fluctuation is around 0.5%.

  • Performance of StageI
set CRF mIoU
train X 66.7%
train O 68.0%
  • Performance of StageII
set pre-train mIoU
val ImageNet 66.7%
val MSCOCO 68.7%
test ImageNet 68.8%
test MSCOCO 69.3%

Citation

If you find the code useful, please consider citing the paper.

@InProceedings{pan2021all,
author = {Shun-Yi Pan, Cheng-You Lu, Shih-Po Lee, and Wen-Hsiao Pen},
title = {Weakly-Supervised Image Semantic Segmentation Using Graph Convolutional Networks},
booktitle = {IEEE International Conference on Multimedia and Expo (ICME)},
year = {2021}
}

Reference

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published