-
Notifications
You must be signed in to change notification settings - Fork 0
Open
Description
Given an unsorted array of integers, find the length of longest continuous increasing subsequence (subarray).
Example 1:
Input: [1,3,5,4,7]
Output: 3
Explanation: The longest continuous increasing subsequence is [1,3,5], its length is 3.
Even though [1,3,5,7] is also an increasing subsequence, it's not a continuous one where 5 and 7 are separated by 4.
Example 2:
Input: [2,2,2,2,2]
Output: 1
Explanation: The longest continuous increasing subsequence is [2], its length is 1.
Note: Length of the array will not exceed 10,000.
这是一道简单的线性规划问题。题目要求的是找到最长的连续增长子数组。那么我们可以设置一个一维线性DP数组,dp[i]表示以nums[i]结尾的最长连续递增子数组。状态转移方程是dp[i] = (nums[i] > nums[i - 1]) ? dp[i - 1] + 1 : 1。
class Solution {
public int findLengthOfLCIS(int[] nums) {
int n = nums.length;
if (n == 0) return 0;
int[] dp = new int[n];
dp[0] = 1;
int maxLength = 1;
for (int i = 1; i < n; ++i) {
dp[i] = (nums[i] > nums[i - 1]) ? dp[i - 1] + 1 : 1;
maxLength = Math.max(maxLength, dp[i]);
}
return maxLength;
}
}
可以继续优化,将空间复杂度降至为常数级别:
class Solution {
public int findLengthOfLCIS(int[] nums) {
int n = nums.length;
if (n == 0) return 0;
int maxLength = 1, preSum = 1;
for (int i = 1; i < n; ++i) {
int sum = (nums[i] > nums[i - 1]) ? preSum + 1 : 1;
maxLength = Math.max(maxLength, sum);
preSum = sum;
}
return maxLength;
}
}
参考资料:
Metadata
Metadata
Assignees
Labels
No labels