Skip to content

LeetCode 1143. Longest Common Subsequence #21

@Woodyiiiiiii

Description

@Woodyiiiiiii

Given two strings text1 and text2, return the length of their longest common subsequence.

A subsequence of a string is a new string generated from the original string with some characters(can be none) deleted without changing the relative order of the remaining characters. (eg, "ace" is a subsequence of "abcde" while "aec" is not). A common subsequence of two strings is a subsequence that is common to both strings.

If there is no common subsequence, return 0.

Example 1:

Input: text1 = "abcde", text2 = "ace" 
Output: 3  
Explanation: The longest common subsequence is "ace" and its length is 3.

Example 2:

Input: text1 = "abc", text2 = "abc"
Output: 3
Explanation: The longest common subsequence is "abc" and its length is 3.

Example 3:

Input: text1 = "abc", text2 = "def"
Output: 0
Explanation: There is no such common subsequence, so the result is 0.

Constraints:

  • 1 <= text1.length <= 1000
  • 1 <= text2.length <= 1000
  • The input strings consist of lowercase English characters only.

仍是用线性DP的思路去做。创建一个二维dp数组,dp[i][j]代表第一个字符串的前 i个字符和第二个字符串的前 j个字符的最长公共子序列长度(从下标1开始)。
初始时:dp[i][0] = dp[0][j] = 0,表示空串和任何非空串都没有公共子序列。
状态转移方式:如果当前第一个字符串的第i个字符和第二个字符串的第j个字符相等,那么

1. dp[i][j] = dp[i - 1][j - 1] + 1
2. dp[i][j] = Math.max(dp[i - 1][j - 1] + 1, Math.max(dp[i - 1][j], dp[i][j - 1]))

否则

dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1])

返回dp[m][n]。

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int m = text1.length(), n = text2.length();
        int[][] dp = new int[m + 1][n + 1];
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
                    // 1.dp[i][j] = dp[i - 1][j - 1] + 1;
                    // 2.
                    dp[i][j] = Math.max(dp[i - 1][j - 1] + 1, 
                                        Math.max(dp[i - 1][j], dp[i][j - 1]));
                }
                else {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        
        return dp[m][n];
    }
}

总结:
首先这是动态规划中的Min/Max paths问题,创建二维数组,设置大小((m + 1) * (n + 1)),这样就不用考虑边界问题,如果是(m* n)那么要初始化第一行第一列。确定dp[i][j]的含义——第一个字符串的前 i个字符和第二个字符串的前 j个字符的最长公共子序列长度。每个位置代表一种状态,接下来确定状态转移函数,dp[i][j]由其左边,上边和左上边的位置决定。当字符串1的第i个字符与字符串2的第j个字符不相等的话,可以忽视text1[i]或者text2[j]的状态,从左边和上边选择最大的子序列长度;反之如果字符相等,那么要从左上角的最大公共序列长度取出再加一。可以举一个例子,比如字符串1是abcd,另一个是aec,当i = j = 2时,其dp数值等于第1个索引也是第0个索引的值加一。
因为有m * n个状态,所以空间复杂度为O(m * n),时间复杂度为O(m * n)。


参考资料:

  1. LeetCode原题
  2. https://www.acwing.com/solution/LeetCode/content/3432/
  3. https://blog.csdn.net/DaVinciL/article/details/99545037

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions