Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: sparse weights iterator end->end #4647

Merged
merged 9 commits into from
Sep 29, 2023
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 28 additions & 0 deletions test/core.vwtest.json
Original file line number Diff line number Diff line change
Expand Up @@ -6017,5 +6017,33 @@
"input_files": [
"train-sets/single_empty_lines.txt"
]
},
{
"id": 465,
"desc": "cb_explore_adf with epsilon-greedy exploration using --sparse_weights and saving model",
"vw_command": "--cb_explore_adf --epsilon 0.1 -d train-sets/cb_test.ldf --noconstant --sparse_weights -f standard_sparse_model.vw",
"diff_files": {
"stderr": "train-sets/ref/sparse_save_check.stderr",
"stdout": "train-sets/ref/sparse_save_check.stdout"
},
"input_files": [
"train-sets/cb_test.ldf"
]
},
{
"id": 466,
"desc": "cb_explore_adf with epsilon-greedy exploration using --sparse_weights and loading model",
"vw_command": "--cb_explore_adf --epsilon 0.1 -d train-sets/cb_test.ldf --noconstant --sparse_weights -i standard_sparse_model.vw",
"diff_files": {
"stderr": "train-sets/ref/sparse_load_check.stderr",
"stdout": "train-sets/ref/sparse_load_check.stdout"
},
"input_files": [
"train-sets/cb_test.ldf",
"standard_sparse_model.vw"
],
"depends_on": [
465
]
}
]
22 changes: 22 additions & 0 deletions test/train-sets/ref/sparse_load_check.stderr
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
using no cache
Reading datafile = train-sets/cb_test.ldf
num sources = 1
Num weight bits = 18
learning rate = 0.5
initial_t = 3
power_t = 0.5
cb_type = mtr
Enabled learners: gd, scorer-identity, csoaa_ldf-rank, cb_adf, cb_explore_adf_greedy, shared_feature_merger
Input label = CB
Output pred = ACTION_PROBS
average since example example current current current
loss last counter weight label predict features
0.066667 0.066667 1 1.0 0:1:0.5 1:0.48 15
0.033333 0.000000 2 2.0 1:0:0.5 1:0.95 6

finished run
number of examples = 3
weighted example sum = 3.000000
weighted label sum = 0.000000
average loss = 0.033333
total feature number = 27
Empty file.
23 changes: 23 additions & 0 deletions test/train-sets/ref/sparse_save_check.stderr
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
final_regressor = standard_sparse_model.vw
using no cache
Reading datafile = train-sets/cb_test.ldf
num sources = 1
Num weight bits = 18
learning rate = 0.5
initial_t = 0
power_t = 0.5
cb_type = mtr
Enabled learners: gd, scorer-identity, csoaa_ldf-rank, cb_adf, cb_explore_adf_greedy, shared_feature_merger
Input label = CB
Output pred = ACTION_PROBS
average since example example current current current
loss last counter weight label predict features
0.666667 0.666667 1 1.0 0:1:0.5 0:0.33 15
0.333333 0.000000 2 2.0 1:0:0.5 1:0.95 6

finished run
number of examples = 3
weighted example sum = 3.000000
weighted label sum = 0.000000
average loss = 0.333333
total feature number = 27
Empty file.
4 changes: 2 additions & 2 deletions vowpalwabbit/core/include/vw/core/array_parameters_sparse.h
Original file line number Diff line number Diff line change
Expand Up @@ -75,11 +75,11 @@ class sparse_parameters

// iterator with stride
iterator begin() { return iterator(_map.begin()); }
iterator end() { return iterator(_map.begin()); }
iterator end() { return iterator(_map.end()); }

// const iterator
const_iterator cbegin() const { return const_iterator(_map.begin()); }
const_iterator cend() const { return const_iterator(_map.begin()); }
const_iterator cend() const { return const_iterator(_map.end()); }

inline VW::weight& operator[](size_t i) { return *(get_or_default_and_get(i)); }

Expand Down