Skip to content

Bad results(Not bad now) #12

Open
Open
@jmtatsch

Description

Although the converted weights produce plausible predictions,
they are not yet up to the published results of the PSPNet paper.

Current results on cityscapes validation set:

classes          IoU      nIoU
--------------------------------
road          : 0.969      nan
sidewalk      : 0.776      nan
building      : 0.871      nan
wall          : 0.532      nan
fence         : 0.464      nan
pole          : 0.302      nan
traffic light : 0.375      nan
traffic sign  : 0.567      nan
vegetation    : 0.872      nan
terrain       : 0.591      nan
sky           : 0.905      nan
person        : 0.585    0.352
rider         : 0.253    0.147
car           : 0.897    0.698
truck         : 0.606    0.284
bus           : 0.721    0.375
train         : 0.652    0.388
motorcycle    : 0.344    0.147
bicycle       : 0.618    0.348
--------------------------------
Score Average : 0.626    0.342
--------------------------------


categories       IoU      nIoU
--------------------------------
flat          : 0.974      nan
nature        : 0.876      nan
object        : 0.397      nan
sky           : 0.905      nan
construction  : 0.872      nan
human         : 0.603    0.376
vehicle       : 0.879    0.676
--------------------------------
Score Average : 0.787    0.526
--------------------------------

Accuracy of the published code on several validation/testing sets according to the author:

PSPNet50 on ADE20K valset (mIoU/pAcc): 41.68/80.04 
PSPNet101 on VOC2012 testset (mIoU): 85.41 (multiscale evaluation!)
PSPNet101 on cityscapes valset (mIoU/pAcc): 79.70/96.38

So we are still missing 79.70 - 62.60 = 17.10 % IoU

Does anyone have an idea where we lose that accuracy?

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions