This repository implements:
Donghyun Kim, Kuniaki Saito, Kate Saenko, Stan Sclaroff, Bryan A. Plummer.
MULE: Multimodal Universal Language Embedding. AAAI, 2020 (Oral).
Our project can be found in here.
This code was tested with Python 2.7 and Tensorflow 1.2.1.
- Download data
- Download data from here
- Unzip the file and place the data in the repo (All data files should be in ./data)
- Download FastText
sh fetch_fasttext_embeddings.sh
./run_mule.sh [MODE] [GPU_ID] [DATASET] [TAG] [EPOCH]
# MODE {train, test, val} which indicates if you want to train the model or evaluate it using test or val splits
# GPU_ID is the GPU you want to test on
# DATASET {multi30k, coco} is defined in run_mule.sh
# TAG is an experiment name
# EPOCH optional, epoch number to test, if not provided, best model on validation data is used
# Examples:
./run_mule.sh train 0 multi30k mule
./run_mule.sh train 1 coco mule
./run_mule.sh test 1 coco mule
./run_mule.sh val 0 multi30k mule 20
By default, trained networks are saved under:
models/[NET]/[DATASET]/{TAG}/
If you find our code useful please consider citing:
@inproceedings{kimMULEAAAI2020,
title={{MULE: Multimodal Universal Language Embedding}},
author={Donghyun Kim and Kuniaki Saito and Kate Saenko and Stan Sclaroff and Bryan A. Plummer},
booktitle={AAAI Conference on Artificial Intelligence},
year={2020}
}