#NTUST-DM-Final_project-reivsed by (https://github.com/RobinLu1209/ST-GFSL#spatio-temporal-graph-few-shot-learning-with-cross-city-knowledge-transfer)
- torch >= 1.8.1
- numpy >= 1.20.3
- scikit-learn >= 0.24.2
- pytorch geometric >= 1.7.2
- pyaml
- scipy
- tqdm
- Download the revised_dataset which added pems04 and pems08 by google drive
# To the floder that main.py was placed
cd ./ST-GFSL-Custom_Dataset
# Set the test dataset and model structure
CUDA_VISIBLE_DEVICES=[CUDA NUM] python main.py --test_dataset [FEW-SHOT DATASET] --model [ST-META MODEL]
# For example: Use GRU model to train a model, and test on PEMS-BAY datasets
CUDA_VISIBLE_DEVICES=0 python main.py --test_dataset pems-04 --model GRU
@inproceedings{DBLP:conf/KDD/CrossCityTransfer22,
author = {Bin Lu and
Xiaoying Gan and
Weinan Zhang and
Huaxiu Yao and
Luoyi Fu and
Xinbing Wang},
title = {Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge Transfer},
booktitle = {{KDD} '22: The 28th {ACM} SIGKDD Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA, August 14--18, 2022},
publisher = {{ACM}},
year = {2022}
}