Skip to content

an autonomous AI agent to analyze hospital purchase orders, vendor pricing, and inventory data.

Notifications You must be signed in to change notification settings

Vikhram-S/Procurement-AI-Agent

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Procurement Optimization AI Agent

An intelligent AI agent that autonomously analyzes hospital purchase orders and vendor pricing to predict optimal procurement strategies for cost and availability optimization.

Features

  • Autonomous Analysis: AI agent analyzes purchase orders and vendor data
  • Cost Optimization: Predicts optimal procurement strategies for cost reduction
  • Availability Forecasting: Forecasts demand and availability patterns
  • Vendor Analysis: Evaluates vendor performance and pricing
  • Interactive Dashboard: Streamlit-based user interface
  • Open Source: Uses local LLMs (Ollama/Mistral-7B) without paid APIs

Tech Stack

  • Agentic AI: LangChain + LangGraph
  • LLM: Ollama (Mistral-7B/LLaMA-3) or Hugging Face Transformers
  • Data Handling: Pandas + SQLAlchemy
  • Analytics: Scikit-learn + XGBoost
  • UI: Streamlit
  • Visualization: Plotly + Matplotlib

Installation

  1. Clone the repository:
git clone <repository-url>
cd procurement-optimization-ai
  1. Install dependencies:
pip install -r requirements.txt
  1. Install Ollama (for local LLM):
# Download from https://ollama.ai/
# Then run:
ollama pull mistral:7b
  1. Run the application:
streamlit run app.py

Project Structure

├── app.py                          # Main Streamlit application
├── agent/
│   ├── __init__.py
│   ├── procurement_agent.py        # Main AI agent logic
│   ├── llm_interface.py           # LLM interface (Ollama/HuggingFace)
│   └── graph_workflow.py          # LangGraph workflow
├── data/
│   ├── __init__.py
│   ├── database.py                # SQLAlchemy database models
│   ├── sample_data.py             # Sample hospital data generator
│   └── data_processor.py          # Data processing utilities
├── models/
│   ├── __init__.py
│   ├── demand_forecaster.py       # Demand forecasting models
│   ├── cost_optimizer.py          # Cost optimization algorithms
│   └── vendor_analyzer.py         # Vendor analysis models
├── utils/
│   ├── __init__.py
│   ├── visualization.py           # Plotting utilities
│   └── config.py                  # Configuration settings
└── requirements.txt

Usage

  1. Start the Application: Run streamlit run app.py
  2. Upload Data: Upload hospital purchase orders and vendor data
  3. Configure Agent: Set analysis parameters and preferences
  4. Run Analysis: Let the AI agent analyze and provide recommendations
  5. View Results: Explore interactive visualizations and reports

Key Components

AI Agent (LangChain + LangGraph)

  • Autonomous analysis of procurement data
  • Multi-step reasoning workflow
  • Cost-benefit analysis
  • Vendor evaluation

Demand Forecasting (Scikit-learn + XGBoost)

  • Time series analysis
  • Seasonal pattern detection
  • Demand prediction models
  • Inventory optimization

Cost Optimization

  • Vendor price comparison
  • Bulk purchase optimization
  • Contract negotiation insights
  • Budget allocation strategies

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests if applicable
  5. Submit a pull request

License

MIT License - see LICENSE file for details.

Contact:

for any inquiries : vikhrams@saveetha.ac.in

About

an autonomous AI agent to analyze hospital purchase orders, vendor pricing, and inventory data.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages