An intelligent AI agent that autonomously analyzes hospital purchase orders and vendor pricing to predict optimal procurement strategies for cost and availability optimization.
- Autonomous Analysis: AI agent analyzes purchase orders and vendor data
- Cost Optimization: Predicts optimal procurement strategies for cost reduction
- Availability Forecasting: Forecasts demand and availability patterns
- Vendor Analysis: Evaluates vendor performance and pricing
- Interactive Dashboard: Streamlit-based user interface
- Open Source: Uses local LLMs (Ollama/Mistral-7B) without paid APIs
- Agentic AI: LangChain + LangGraph
- LLM: Ollama (Mistral-7B/LLaMA-3) or Hugging Face Transformers
- Data Handling: Pandas + SQLAlchemy
- Analytics: Scikit-learn + XGBoost
- UI: Streamlit
- Visualization: Plotly + Matplotlib
- Clone the repository:
git clone <repository-url>
cd procurement-optimization-ai- Install dependencies:
pip install -r requirements.txt- Install Ollama (for local LLM):
# Download from https://ollama.ai/
# Then run:
ollama pull mistral:7b- Run the application:
streamlit run app.py├── app.py # Main Streamlit application
├── agent/
│ ├── __init__.py
│ ├── procurement_agent.py # Main AI agent logic
│ ├── llm_interface.py # LLM interface (Ollama/HuggingFace)
│ └── graph_workflow.py # LangGraph workflow
├── data/
│ ├── __init__.py
│ ├── database.py # SQLAlchemy database models
│ ├── sample_data.py # Sample hospital data generator
│ └── data_processor.py # Data processing utilities
├── models/
│ ├── __init__.py
│ ├── demand_forecaster.py # Demand forecasting models
│ ├── cost_optimizer.py # Cost optimization algorithms
│ └── vendor_analyzer.py # Vendor analysis models
├── utils/
│ ├── __init__.py
│ ├── visualization.py # Plotting utilities
│ └── config.py # Configuration settings
└── requirements.txt
- Start the Application: Run
streamlit run app.py - Upload Data: Upload hospital purchase orders and vendor data
- Configure Agent: Set analysis parameters and preferences
- Run Analysis: Let the AI agent analyze and provide recommendations
- View Results: Explore interactive visualizations and reports
- Autonomous analysis of procurement data
- Multi-step reasoning workflow
- Cost-benefit analysis
- Vendor evaluation
- Time series analysis
- Seasonal pattern detection
- Demand prediction models
- Inventory optimization
- Vendor price comparison
- Bulk purchase optimization
- Contract negotiation insights
- Budget allocation strategies
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests if applicable
- Submit a pull request
MIT License - see LICENSE file for details.
for any inquiries : vikhrams@saveetha.ac.in