A comprehensive semantic segmentation pipeline for Mars surface imagery using a Convolutional Block Attention Module (CBAM) – enhanced U‑Net architecture. This repository provides scripts for data preprocessing, model training, evaluation, inference, visualization, and pseudo‑labeling support.
Architecture: U‑Net with integrated CBAM (Channel + Spatial Attention) blocks
Segmentation Classes:
- 0 – Background
(0, 0, 0)
- 1 – Crater
(255, 255, 0)
- 2 – Rough
(255, 0, 0)
- 3 – Smooth
(0, 255, 0)
- 4 – Alluvial Fan
(0, 0, 255)
- 5 – Boulders
(139, 69, 19)
Loss Function: Weighted Cross‑Entropy + Dice Loss (background ignored)
Training: PyTorch with mixed‑precision (AMP) and OneCycleLR scheduler
Evaluation Metrics: Per-class IoU, Dice, Precision, Recall; Mean IoU; Average inference time
Contibutors: Anoushka Chatterjee and Keerthana A R