-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
283 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,9 @@ | ||
|
||
CXX=clang++ --gcc-toolchain=/nfs/software/x86_64/gcc/7.4.0 | ||
CFLAGS=-std=c++11 -O3 -fsycl | ||
LIBS=-lOpenCL | ||
|
||
heat: heat_sycl.cpp Makefile | ||
$(CXX) $(CFLAGS) heat_sycl.cpp $(LIBS) -o $@ | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,274 @@ | ||
|
||
/* | ||
** PROGRAM: heat equation solve | ||
** | ||
** PURPOSE: This program will explore use of an explicit | ||
** finite difference method to solve the heat | ||
** equation under a method of manufactured solution (MMS) | ||
** scheme. The solution has been set to be a simple | ||
** function based on exponentials and trig functions. | ||
** | ||
** A finite difference scheme is used on a 1000x1000 cube. | ||
** A total of 0.5 units of time are simulated. | ||
** | ||
** The MMS solution has been adapted from | ||
** G.W. Recktenwald (2011). Finite difference approximations | ||
** to the Heat Equation. Portland State University. | ||
** | ||
** | ||
** USAGE: Run with two arguments: | ||
** First is the number of cells. | ||
** Second is the number of timesteps. | ||
** | ||
** For example, with 100x100 cells and 10 steps: | ||
** | ||
** ./heat 100 10 | ||
** | ||
** | ||
** HISTORY: Written by Tom Deakin, Oct 2018 | ||
** Ported to SYCL by Tom Deakin, Nov 2019 | ||
** | ||
*/ | ||
|
||
#include <iostream> | ||
#include <chrono> | ||
#include <cmath> | ||
|
||
#include <CL/sycl.hpp> | ||
|
||
// Key constants used in this program | ||
#define PI cl::sycl::acos(-1.0) // Pi | ||
#define LINE "--------------------" // A line for fancy output | ||
|
||
// Function definitions | ||
void initial_value(cl::sycl::queue &queue, const unsigned int n, const double dx, const double length, cl::sycl::buffer<double,2>& u); | ||
void zero(cl::sycl::queue &queue, const unsigned int n, cl::sycl::buffer<double,2>& u); | ||
void solve(cl::sycl::queue &queue, const unsigned int n, const double alpha, const double dx, const double dt, cl::sycl::buffer<double,2>& u, cl::sycl::buffer<double,2>& u_tmp); | ||
double solution(const double t, const double x, const double y, const double alpha, const double length); | ||
double l2norm(const unsigned int n, const double * u, const int nsteps, const double dt, const double alpha, const double dx, const double length); | ||
|
||
// Main function | ||
int main(int argc, char *argv[]) { | ||
|
||
// Start the total program runtime timer | ||
auto start = std::chrono::high_resolution_clock::now(); | ||
|
||
// Problem size, forms an nxn grid | ||
unsigned int n = 1000; | ||
|
||
// Number of timesteps | ||
int nsteps = 10; | ||
|
||
|
||
// Check for the correct number of arguments | ||
// Print usage and exits if not correct | ||
if (argc == 3) { | ||
|
||
// Set problem size from first argument | ||
n = atoi(argv[1]); | ||
if (n < 0) { | ||
std::cerr << "Error: n must be positive" << std::endl; | ||
exit(EXIT_FAILURE); | ||
} | ||
|
||
// Set number of timesteps from second argument | ||
nsteps = atoi(argv[2]); | ||
if (nsteps < 0) { | ||
std::cerr << "Error: nsteps must be positive" << std::endl; | ||
exit(EXIT_FAILURE); | ||
} | ||
} | ||
|
||
|
||
// | ||
// Set problem definition | ||
// | ||
double alpha = 0.1; // heat equation coefficient | ||
double length = 1000.0; // physical size of domain: length x length square | ||
double dx = length / (n+1); // physical size of each cell (+1 as don't simulate boundaries as they are given) | ||
double dt = 0.5 / nsteps; // time interval (total time of 0.5s) | ||
|
||
|
||
// Stability requires that dt/(dx^2) <= 0.5, | ||
double r = alpha * dt / (dx * dx); | ||
|
||
// Initalise SYCL queue on a GPU device | ||
cl::sycl::queue queue {cl::sycl::gpu_selector{}}; | ||
|
||
// Print message detailing runtime configuration | ||
std::cout | ||
<< std::endl | ||
<< " MMS heat equation" << std::endl << std::endl | ||
<< LINE << std::endl | ||
<< "Problem input" << std::endl << std::endl | ||
<< " Grid size: " << n << " x " << n << std::endl | ||
<< " Cell width: " << dx << std::endl | ||
<< " Grid length: " << length << "x" << length << std::endl | ||
<< std::endl | ||
<< " Alpha: " << alpha << std::endl | ||
<< std::endl | ||
<< " Steps: " << nsteps << std::endl | ||
<< " Total time: " << dt*(double)nsteps << std::endl | ||
<< " Time step: " << dt << std::endl | ||
<< " SYCL device: " << queue.get_device().get_info<cl::sycl::info::device::name>() << std::endl | ||
<< LINE << std::endl; | ||
|
||
// Stability check | ||
std::cout << "Stability" << std::endl << std::endl; | ||
std::cout << " r value: " << r << std::endl; | ||
if (r > 0.5) | ||
std::cout << " Warning: unstable" << std::endl; | ||
std::cout << LINE << std::endl; | ||
|
||
|
||
// Allocate two nxn grids | ||
cl::sycl::buffer<double, 2> u{cl::sycl::range<2>{n,n}}; | ||
cl::sycl::buffer<double, 2> u_tmp{cl::sycl::range<2>{n,n}}; | ||
|
||
// Set the initial value of the grid under the MMS scheme | ||
initial_value(queue, n, dx, length, u); | ||
zero(queue, n, u_tmp); | ||
|
||
// Ensure everything is initalised on the device | ||
queue.wait(); | ||
|
||
// | ||
// Run through timesteps under the explicit scheme | ||
// | ||
|
||
// Start the solve timer | ||
auto tic = std::chrono::high_resolution_clock::now(); | ||
for (int t = 0; t < nsteps; ++t) { | ||
|
||
// Call the solve kernel | ||
// Computes u_tmp at the next timestep | ||
// given the value of u at the current timestep | ||
solve(queue, n, alpha, dx, dt, u, u_tmp); | ||
|
||
// Pointer swap | ||
auto tmp = std::move(u); | ||
u = std::move(u_tmp); | ||
u_tmp = std::move(tmp); | ||
} | ||
// Stop solve timer | ||
queue.wait(); | ||
auto toc = std::chrono::high_resolution_clock::now(); | ||
|
||
// Get access to u on the host | ||
double *u_host = u.get_access<cl::sycl::access::mode::read>().get_pointer(); | ||
|
||
// | ||
// Check the L2-norm of the computed solution | ||
// against the *known* solution from the MMS scheme | ||
// | ||
double norm = l2norm(n, u_host, nsteps, dt, alpha, dx, length); | ||
|
||
// Stop total timer | ||
auto stop = std::chrono::high_resolution_clock::now(); | ||
|
||
// Print results | ||
std::cout | ||
<< "Results" << std::endl << std::endl | ||
<< "Error (L2norm): " << norm << std::endl | ||
<< "Solve time (s): " << std::chrono::duration_cast<std::chrono::duration<double>>(toc-tic).count() << std::endl | ||
<< "Total time (s): " << std::chrono::duration_cast<std::chrono::duration<double>>(stop-start).count() << std::endl | ||
<< "Bandwidth (GB/s): " << 1.0E-9*2.0*n*n*nsteps*sizeof(double)/std::chrono::duration_cast<std::chrono::duration<double>>(toc-tic).count() << std::endl | ||
<< LINE << std::endl; | ||
|
||
} | ||
|
||
|
||
// Sets the mesh to an initial value, determined by the MMS scheme | ||
void initial_value(cl::sycl::queue& queue, const unsigned int n, const double dx, const double length, cl::sycl::buffer<double,2>& u) { | ||
|
||
queue.submit([&](cl::sycl::handler& cgh) { | ||
auto ua = u.get_access<cl::sycl::access::mode::discard_write>(cgh); | ||
|
||
cgh.parallel_for<class initial_value_kernel>(cl::sycl::range<2>{n, n}, [=](cl::sycl::id<2> idx) { | ||
int i = idx[1]; | ||
int j = idx[0]; | ||
double y = dx * (j+1); // Physical y position | ||
double x = dx * (i+1); // Physical x position | ||
ua[j][i] = cl::sycl::sin(PI * x / length) * cl::sycl::sin(PI * y / length); | ||
}); | ||
}); | ||
} | ||
|
||
|
||
// Zero the array u | ||
void zero(cl::sycl::queue& queue, const unsigned int n, cl::sycl::buffer<double,2>& u) { | ||
|
||
queue.submit([&](cl::sycl::handler& cgh) { | ||
auto ua = u.get_access<cl::sycl::access::mode::discard_write>(cgh); | ||
|
||
cgh.parallel_for<class zero_kernel>(cl::sycl::range<2>{n,n}, [=](cl::sycl::id<2> idx) { | ||
ua[idx] = 0.0; | ||
}); | ||
}); | ||
|
||
} | ||
|
||
|
||
// Compute the next timestep, given the current timestep | ||
void solve(cl::sycl::queue& queue, const unsigned int n, const double alpha, const double dx, const double dt, cl::sycl::buffer<double,2>& u_b, cl::sycl::buffer<double,2>& u_tmp_b) { | ||
|
||
// Finite difference constant multiplier | ||
const double r = alpha * dt / (dx * dx); | ||
const double r2 = 1.0 - 4.0*r; | ||
|
||
queue.submit([&](cl::sycl::handler& cgh) { | ||
auto u_tmp = u_tmp_b.get_access<cl::sycl::access::mode::discard_write>(cgh); | ||
auto u = u_b.get_access<cl::sycl::access::mode::read>(cgh); | ||
|
||
// Loop over the nxn grid | ||
cgh.parallel_for<class solve_kernel>(cl::sycl::range<2>{n, n}, [=](cl::sycl::id<2> idx) { | ||
int j = idx[0]; | ||
int i = idx[1]; | ||
|
||
// Update the 5-point stencil, using boundary conditions on the edges of the domain. | ||
// Boundaries are zero because the MMS solution is zero there. | ||
u_tmp[j][i] = r2 * u[j][i] + | ||
r * ((i < n-1) ? u[j][i+1] : 0.0) + | ||
r * ((i > 0) ? u[j][i-1] : 0.0) + | ||
r * ((j < n-1) ? u[j+1][i] : 0.0) + | ||
r * ((j > 0) ? u[j-1][i] : 0.0); | ||
}); | ||
}); | ||
} | ||
|
||
|
||
// True answer given by the manufactured solution | ||
double solution(const double t, const double x, const double y, const double alpha, const double length) { | ||
|
||
return exp(-2.0*alpha*PI*PI*t/(length*length)) * sin(PI*x/length) * sin(PI*y/length); | ||
|
||
} | ||
|
||
|
||
// Computes the L2-norm of the computed grid and the MMS known solution | ||
// The known solution is the same as the boundary function. | ||
double l2norm(const unsigned int n, const double * u, const int nsteps, const double dt, const double alpha, const double dx, const double length) { | ||
|
||
// Final (real) time simulated | ||
double time = dt * (double)nsteps; | ||
|
||
// L2-norm error | ||
double l2norm = 0.0; | ||
|
||
// Loop over the grid and compute difference of computed and known solutions as an L2-norm | ||
double y = dx; | ||
for (int j = 0; j < n; ++j) { | ||
double x = dx; | ||
for (int i = 0; i < n; ++i) { | ||
double answer = solution(time, x, y, alpha, length); | ||
l2norm += (u[i+j*n] - answer) * (u[i+j*n] - answer); | ||
|
||
x += dx; | ||
} | ||
y += dx; | ||
} | ||
|
||
return sqrt(l2norm); | ||
|
||
} | ||
|