Skip to content

[tests] Make end-to-end tests more stable #3697

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Mar 27, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion ml-agents/mlagents/trainers/tests/simple_test_envs.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
VIS_OBS_SIZE = (20, 20, 3)
STEP_SIZE = 0.1

TIME_PENALTY = 0.001
TIME_PENALTY = 0.01
MIN_STEPS = int(1.0 / STEP_SIZE) + 1
SUCCESS_REWARD = 1.0 + MIN_STEPS * TIME_PENALTY

Expand Down
24 changes: 16 additions & 8 deletions ml-agents/mlagents/trainers/tests/test_simple_rl.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@
lambd: 0.95
learning_rate: 5.0e-3
learning_rate_schedule: constant
max_steps: 2000
max_steps: 3000
memory_size: 16
normalize: false
num_epoch: 3
Expand Down Expand Up @@ -96,6 +96,9 @@ def generate_config(
# Custom reward processors shuld be built within the test function and passed to _check_environment_trains
# Default is average over the last 5 final rewards
def default_reward_processor(rewards, last_n_rewards=5):
rewards_to_use = rewards[-last_n_rewards:]
# For debugging tests
print("Last {} rewards:".format(last_n_rewards), rewards_to_use)
return np.array(rewards[-last_n_rewards:], dtype=np.float32).mean()


Expand Down Expand Up @@ -124,7 +127,7 @@ def _check_environment_trains(
trainer_config,
reward_processor=default_reward_processor,
meta_curriculum=None,
success_threshold=0.99,
success_threshold=0.9,
env_manager=None,
):
# Create controller and begin training.
Expand Down Expand Up @@ -168,7 +171,6 @@ def _check_environment_trains(
if (
success_threshold is not None
): # For tests where we are just checking setup and not reward

processed_rewards = [
reward_processor(rewards) for rewards in env.final_rewards.values()
]
Expand Down Expand Up @@ -253,11 +255,11 @@ def test_simple_sac(use_discrete):
@pytest.mark.parametrize("use_discrete", [True, False])
def test_2d_sac(use_discrete):
env = SimpleEnvironment(
[BRAIN_NAME], use_discrete=use_discrete, action_size=2, step_size=0.5
[BRAIN_NAME], use_discrete=use_discrete, action_size=2, step_size=0.8
)
override_vals = {"buffer_init_steps": 2000, "max_steps": 3000}
override_vals = {"buffer_init_steps": 2000, "max_steps": 4000}
config = generate_config(SAC_CONFIG, override_vals)
_check_environment_trains(env, config)
_check_environment_trains(env, config, success_threshold=0.8)


@pytest.mark.parametrize("use_discrete", [True, False])
Expand Down Expand Up @@ -301,7 +303,13 @@ def test_visual_advanced_sac(vis_encode_type, num_visual):
@pytest.mark.parametrize("use_discrete", [True, False])
def test_recurrent_sac(use_discrete):
env = MemoryEnvironment([BRAIN_NAME], use_discrete=use_discrete)
override_vals = {"batch_size": 32, "use_recurrent": True, "max_steps": 2000}
override_vals = {
"batch_size": 64,
"use_recurrent": True,
"max_steps": 3000,
"learning_rate": 1e-3,
"buffer_init_steps": 500,
}
config = generate_config(SAC_CONFIG, override_vals)
_check_environment_trains(env, config)

Expand Down Expand Up @@ -343,7 +351,7 @@ def test_simple_ghost_fails(use_discrete):
processed_rewards = [
default_reward_processor(rewards) for rewards in env.final_rewards.values()
]
success_threshold = 0.99
success_threshold = 0.9
assert any(reward > success_threshold for reward in processed_rewards) and any(
reward < success_threshold for reward in processed_rewards
)
Expand Down