Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions src/complex-numbers/complex-numbers.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -67,14 +67,14 @@ eq-ℂ = eq-pair

```agda
complex-ℝ : {l : Level} → ℝ l → ℂ l
complex-ℝ {l} a = (a , raise-ℝ l zero-ℝ)
complex-ℝ {l} a = (a , raise-zero-ℝ l)
```

### The imaginary embedding of real numbers into the complex numbers

```agda
im-complex-ℝ : {l : Level} → ℝ l → ℂ l
im-complex-ℝ {l} a = (raise-ℝ l zero-ℝ , a)
im-complex-ℝ {l} a = (raise-zero-ℝ l , a)
```

### The canonical embedding of Gaussian integers into the complex numbers
Expand Down
2 changes: 1 addition & 1 deletion src/complex-numbers/magnitude-complex-numbers.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -239,7 +239,7 @@ abstract
magnitude-complex-ℝ {l} x =
equational-reasoning
real-sqrt-ℝ⁰⁺
( nonnegative-square-ℝ x +ℝ⁰⁺ nonnegative-square-ℝ (raise-ℝ l zero-ℝ))
( nonnegative-square-ℝ x +ℝ⁰⁺ nonnegative-square-ℝ (raise-zero-ℝ l))
real-sqrt-ℝ⁰⁺
( nonnegative-square-ℝ x +ℝ⁰⁺ nonnegative-square-ℝ zero-ℝ)
Expand Down
42 changes: 17 additions & 25 deletions src/linear-algebra/normed-real-vector-spaces.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@ open import real-numbers.raising-universe-levels-real-numbers
open import real-numbers.rational-real-numbers
open import real-numbers.saturation-inequality-nonnegative-real-numbers
open import real-numbers.similarity-real-numbers
open import real-numbers.zero-real-numbers
```

</details>
Expand Down Expand Up @@ -68,16 +69,16 @@ module _
{l1 l2 : Level} (V : ℝ-Vector-Space l1 l2) (p : seminorm-ℝ-Vector-Space V)
where

is-norm-prop-seminorm-ℝ-Vector-Space : Prop (lsuc l1 ⊔ l2)
is-norm-prop-seminorm-ℝ-Vector-Space : Prop (l1 ⊔ l2)
is-norm-prop-seminorm-ℝ-Vector-Space =
Π-Prop
( type-ℝ-Vector-Space V)
( λ v →
hom-Prop
( Id-Prop (ℝ-Set l1) (pr1 p v) (raise-ℝ l1 zero-ℝ))
( is-zero-prop-ℝ (pr1 p v))
( is-zero-prop-ℝ-Vector-Space V v))

is-norm-seminorm-ℝ-Vector-Space : UU (lsuc l1 ⊔ l2)
is-norm-seminorm-ℝ-Vector-Space : UU (l1 ⊔ l2)
is-norm-seminorm-ℝ-Vector-Space =
type-Prop is-norm-prop-seminorm-ℝ-Vector-Space

Expand Down Expand Up @@ -209,13 +210,13 @@ module _

is-extensional-norm-Normed-ℝ-Vector-Space :
(v : type-Normed-ℝ-Vector-Space) →
map-norm-Normed-ℝ-Vector-Space v = raise-ℝ l1 zero-ℝ
is-zero-ℝ (map-norm-Normed-ℝ-Vector-Space v)
v = zero-Normed-ℝ-Vector-Space
is-extensional-norm-Normed-ℝ-Vector-Space = pr2 norm-Normed-ℝ-Vector-Space

is-extensional-dist-Normed-ℝ-Vector-Space :
(v w : type-Normed-ℝ-Vector-Space) →
dist-Normed-ℝ-Vector-Space v w = raise-ℝ l1 zero-ℝ
is-zero-ℝ (dist-Normed-ℝ-Vector-Space v w)
v = w
is-extensional-dist-Normed-ℝ-Vector-Space v w |v-w|=0 =
eq-is-zero-right-subtraction-Ab
Expand All @@ -224,11 +225,11 @@ module _
( diff-Normed-ℝ-Vector-Space v w)
( |v-w|=0))

commutative-dist-Normed-ℝ-Vector-Space :
symmetric-dist-Normed-ℝ-Vector-Space :
(v w : type-Normed-ℝ-Vector-Space) →
dist-Normed-ℝ-Vector-Space v w = dist-Normed-ℝ-Vector-Space w v
commutative-dist-Normed-ℝ-Vector-Space =
commutative-dist-Seminormed-ℝ-Vector-Space
symmetric-dist-Normed-ℝ-Vector-Space =
symmetric-dist-Seminormed-ℝ-Vector-Space
( seminormed-vector-space-Normed-ℝ-Vector-Space)
```

Expand All @@ -241,28 +242,19 @@ module _

refl-norm-Normed-ℝ-Vector-Space :
(v : type-Normed-ℝ-Vector-Space V) →
sim-ℝ zero-ℝ (dist-Normed-ℝ-Vector-Space V v v)
refl-norm-Normed-ℝ-Vector-Space v =
inv-tr
( sim-ℝ zero-ℝ)
( is-zero-diagonal-dist-Seminormed-ℝ-Vector-Space
( seminormed-vector-space-Normed-ℝ-Vector-Space V)
( v))
( sim-raise-ℝ l1 zero-ℝ)
is-zero-ℝ (dist-Normed-ℝ-Vector-Space V v v)
refl-norm-Normed-ℝ-Vector-Space =
is-zero-diagonal-dist-Seminormed-ℝ-Vector-Space
( seminormed-vector-space-Normed-ℝ-Vector-Space V)

metric-Normed-ℝ-Vector-Space : Metric l1 (set-Normed-ℝ-Vector-Space V)
metric-Normed-ℝ-Vector-Space =
( nonnegative-dist-Normed-ℝ-Vector-Space V ,
refl-norm-Normed-ℝ-Vector-Space ,
( λ v w → eq-ℝ⁰⁺ _ _ (commutative-dist-Normed-ℝ-Vector-Space V v w)) ,
( λ v w → eq-ℝ⁰⁺ _ _ (symmetric-dist-Normed-ℝ-Vector-Space V v w)) ,
triangular-dist-Seminormed-ℝ-Vector-Space
( seminormed-vector-space-Normed-ℝ-Vector-Space V) ,
( λ v w 0~dvw →
is-extensional-dist-Normed-ℝ-Vector-Space V v w
( eq-sim-ℝ
( transitive-sim-ℝ _ _ _
( sim-raise-ℝ l1 zero-ℝ)
( symmetric-sim-ℝ 0~dvw)))))
is-extensional-dist-Normed-ℝ-Vector-Space V)

metric-space-Normed-ℝ-Vector-Space : Metric-Space l2 l1
metric-space-Normed-ℝ-Vector-Space =
Expand All @@ -287,7 +279,7 @@ normed-real-vector-space-ℝ :
normed-real-vector-space-ℝ l =
( real-vector-space-ℝ l ,
( abs-ℝ , triangle-inequality-abs-ℝ , abs-mul-ℝ) ,
eq-raise-zero-eq-raise-zero-abs-ℝ)
λ x |x|~0 → eq-raise-zero-is-zero-ℝ (is-zero-is-zero-abs-ℝ x |x|~0))

abstract
eq-metric-space-normed-real-vector-space-metric-space-ℝ :
Expand Down Expand Up @@ -341,7 +333,7 @@ module _
( _)
( _))
= dist-Normed-ℝ-Vector-Space V x y
by commutative-dist-Normed-ℝ-Vector-Space V y x)))
by symmetric-dist-Normed-ℝ-Vector-Space V y x)))
```

### Left addition is an isometry in the metric space of a normed vector space
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@ open import linear-algebra.real-vector-spaces

open import real-numbers.dedekind-real-numbers
open import real-numbers.rational-real-numbers
open import real-numbers.zero-real-numbers
```

</details>
Expand All @@ -40,15 +41,12 @@ module _
where

is-orthogonal-prop-bilinear-form-ℝ-Vector-Space :
Relation-Prop (lsuc l1) (type-ℝ-Vector-Space V)
Relation-Prop l1 (type-ℝ-Vector-Space V)
is-orthogonal-prop-bilinear-form-ℝ-Vector-Space v w =
Id-Prop
( ℝ-Set l1)
( map-bilinear-form-ℝ-Vector-Space V B v w)
( raise-zero-ℝ l1)
is-zero-prop-ℝ (map-bilinear-form-ℝ-Vector-Space V B v w)

is-orthogonal-bilinear-form-ℝ-Vector-Space :
Relation (lsuc l1) (type-ℝ-Vector-Space V)
Relation l1 (type-ℝ-Vector-Space V)
is-orthogonal-bilinear-form-ℝ-Vector-Space =
type-Relation-Prop is-orthogonal-prop-bilinear-form-ℝ-Vector-Space
```
45 changes: 26 additions & 19 deletions src/linear-algebra/orthogonality-real-inner-product-spaces.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@ open import real-numbers.raising-universe-levels-real-numbers
open import real-numbers.rational-real-numbers
open import real-numbers.similarity-real-numbers
open import real-numbers.square-roots-nonnegative-real-numbers
open import real-numbers.zero-real-numbers
```

</details>
Expand All @@ -47,14 +48,14 @@ module _
where

is-orthogonal-prop-ℝ-Inner-Product-Space :
Relation-Prop (lsuc l1) (type-ℝ-Inner-Product-Space V)
Relation-Prop l1 (type-ℝ-Inner-Product-Space V)
is-orthogonal-prop-ℝ-Inner-Product-Space =
is-orthogonal-prop-bilinear-form-ℝ-Vector-Space
( vector-space-ℝ-Inner-Product-Space V)
( bilinear-form-inner-product-ℝ-Inner-Product-Space V)

is-orthogonal-ℝ-Inner-Product-Space :
Relation (lsuc l1) (type-ℝ-Inner-Product-Space V)
Relation l1 (type-ℝ-Inner-Product-Space V)
is-orthogonal-ℝ-Inner-Product-Space =
type-Relation-Prop is-orthogonal-prop-ℝ-Inner-Product-Space
```
Expand Down Expand Up @@ -95,8 +96,15 @@ module _
⟨ v +V w ,V v +V w ⟩
= ⟨ v ,V v ⟩ +ℝ real-ℕ 2 *ℝ ⟨ v ,V w ⟩ +ℝ ⟨ w ,V w ⟩
by squared-norm-add-ℝ-Inner-Product-Space V v w
= ⟨ v ,V v ⟩ +ℝ real-ℕ 2 *ℝ raise-ℝ l1 zero-ℝ +ℝ ⟨ w ,V w ⟩
by ap-add-ℝ (ap-add-ℝ refl (ap-mul-ℝ refl v∙w=0)) refl
= ⟨ v ,V v ⟩ +ℝ real-ℕ 2 *ℝ raise-zero-ℝ l1 +ℝ ⟨ w ,V w ⟩
by
ap-add-ℝ
( ap-add-ℝ
( refl)
( ap-mul-ℝ
( refl)
( eq-raise-zero-is-zero-ℝ v∙w=0)))
( refl)
= ⟨ v ,V v ⟩ +ℝ zero-ℝ +ℝ ⟨ w ,V w ⟩
by
ap-add-ℝ
Expand Down Expand Up @@ -124,8 +132,7 @@ module _
norm-add-orthogonal-ℝ-Inner-Product-Space v w v∙w=0 =
ap
( real-sqrt-ℝ⁰⁺)
( eq-ℝ⁰⁺ _ _
( pythagorean-theorem-ℝ-Inner-Product-Space v w v∙w=0))
( eq-ℝ⁰⁺ _ _ (pythagorean-theorem-ℝ-Inner-Product-Space v w v∙w=0))
```

### Orthogonality is preserved by scalar multiplication
Expand All @@ -144,22 +151,22 @@ module _
preserves-is-orthogonal-left-mul-ℝ-Inner-Product-Space c v w v·w=0 =
let
⟨_,V_⟩ = inner-product-ℝ-Inner-Product-Space V
_+V_ = add-ℝ-Inner-Product-Space V
_*V_ = mul-ℝ-Inner-Product-Space V
in
equational-reasoning
⟨ c *V v ,V w ⟩
= c *ℝ ⟨ v ,V w ⟩
by
preserves-scalar-mul-left-inner-product-ℝ-Inner-Product-Space
similarity-reasoning-ℝ
⟨ c *V v ,V w ⟩
~ℝ c *ℝ ⟨ v ,V w ⟩
by
sim-eq-ℝ
( preserves-scalar-mul-left-inner-product-ℝ-Inner-Product-Space
( V)
( _)
( _)
( _)
c *ℝ raise-ℝ l1 zero-ℝ
by ap-mul-ℝ refl v·w=0
= raise-ℝ l1 zero-ℝ
by right-raise-zero-law-mul-ℝ c
( c)
( v)
( w))
~ℝ c *ℝ zero-ℝ
by preserves-sim-left-mul-ℝ c _ _ v·w=0
~ℝ zero-ℝ
by right-zero-law-mul-ℝ c
```

## References
Expand Down
19 changes: 7 additions & 12 deletions src/linear-algebra/real-inner-product-spaces-are-normed.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,7 @@ open import real-numbers.rational-real-numbers
open import real-numbers.similarity-real-numbers
open import real-numbers.square-roots-nonnegative-real-numbers
open import real-numbers.squares-real-numbers
open import real-numbers.zero-real-numbers
```

</details>
Expand Down Expand Up @@ -145,23 +146,17 @@ module _
abstract
is-extensional-norm-ℝ-Inner-Product-Space :
(v : type-ℝ-Inner-Product-Space V) →
(norm-ℝ-Inner-Product-Space V v = raise-ℝ l1 zero-ℝ) →
is-zero-ℝ (norm-ℝ-Inner-Product-Space V v) →
is-zero-ℝ-Inner-Product-Space V v
is-extensional-norm-ℝ-Inner-Product-Space v ∥v∥=0 =
is-extensional-diagonal-inner-product-ℝ-Inner-Product-Space
( V)
( v)
( equational-reasoning
squared-norm-ℝ-Inner-Product-Space V v
= square-ℝ (norm-ℝ-Inner-Product-Space V v)
by
inv
( eq-real-square-sqrt-ℝ⁰⁺
( nonnegative-squared-norm-ℝ-Inner-Product-Space V v))
= square-ℝ (raise-ℝ l1 zero-ℝ)
by ap square-ℝ ∥v∥=0
= raise-ℝ l1 zero-ℝ
by square-raise-zero-ℝ l1)
( tr
( is-zero-ℝ)
( eq-real-square-sqrt-ℝ⁰⁺
( nonnegative-squared-norm-ℝ-Inner-Product-Space V v))
( is-zero-square-is-zero-ℝ ∥v∥=0))

norm-normed-vector-space-ℝ-Inner-Product-Space :
norm-ℝ-Vector-Space (vector-space-ℝ-Inner-Product-Space V)
Expand Down
12 changes: 5 additions & 7 deletions src/linear-algebra/real-inner-product-spaces.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,7 @@ open import real-numbers.rational-real-numbers
open import real-numbers.similarity-real-numbers
open import real-numbers.square-roots-nonnegative-real-numbers
open import real-numbers.squares-real-numbers
open import real-numbers.zero-real-numbers
```

</details>
Expand Down Expand Up @@ -74,16 +75,13 @@ module _
( type-ℝ-Vector-Space V)
( λ v → is-nonnegative-prop-ℝ (map-bilinear-form-ℝ-Vector-Space V B v v))

is-extensional-prop-bilinear-form-ℝ-Vector-Space : Prop (lsuc l1 ⊔ l2)
is-extensional-prop-bilinear-form-ℝ-Vector-Space : Prop (l1 ⊔ l2)
is-extensional-prop-bilinear-form-ℝ-Vector-Space =
Π-Prop
( type-ℝ-Vector-Space V)
( λ v →
hom-Prop
( Id-Prop
( ℝ-Set l1)
( map-bilinear-form-ℝ-Vector-Space V B v v)
( raise-ℝ l1 zero-ℝ))
( is-zero-prop-ℝ (map-bilinear-form-ℝ-Vector-Space V B v v))
( is-zero-prop-ℝ-Vector-Space V v))

is-inner-product-prop-bilinear-form-ℝ-Vector-Space : Prop (lsuc l1 ⊔ l2)
Expand Down Expand Up @@ -217,7 +215,7 @@ module _

is-extensional-diagonal-inner-product-ℝ-Inner-Product-Space :
(v : type-ℝ-Inner-Product-Space) →
inner-product-ℝ-Inner-Product-Space v v = raise-zero-ℝ l1
is-zero-ℝ (inner-product-ℝ-Inner-Product-Space v v)
v = zero-ℝ-Inner-Product-Space
is-extensional-diagonal-inner-product-ℝ-Inner-Product-Space =
pr2 (pr2 (pr2 (pr2 V)))
Expand Down Expand Up @@ -602,7 +600,7 @@ is-inner-product-bilinear-form-mul-ℝ :
is-inner-product-bilinear-form-mul-ℝ l =
( commutative-mul-ℝ ,
is-nonnegative-square-ℝ ,
eq-zero-eq-zero-square-ℝ)
λ x x²=0 → eq-raise-zero-is-zero-ℝ (is-zero-is-zero-square-ℝ x x²=0))

real-inner-product-space-ℝ : (l : Level) → ℝ-Inner-Product-Space l (lsuc l)
real-inner-product-space-ℝ l =
Expand Down
Loading