A local-first chatbot to understand your healthcare data (labs PDFs, medications CSV/XLSX, WHOOP CSVs) using LangChain + Ollama + Chroma.
- Ingests:
- PDFs in
data/labs/ - Meds CSV/XLSX in
data/medications/ - WHOOP CSVs in
data/whoop/
- PDFs in
- Builds a vector index (Chroma) from a lightweight text corpus.
- Streamlit chat UI with basic RAG and citations.
- No external API costs (uses Ollama + sentence-transformers).
- Install Ollama and a model:
- https://ollama.com/download
- Recommended chat model:
ollama pull qwen3:14b
- Python env
python -m venv .venv && source .venv/bin/activatepip install -r requirements.txt
- Configure env
cp .env.example .envand adjust if needed
- Ingest data
python -m app.ingestion.ingest_labspython -m app.ingestion.ingest_medspython -m app.ingestion.ingest_whoop
- Build index
python -m app.indexing.build_index
- Run UI
streamlit run app/app.py- Use the
--logger.level=infoflag to see more detailed logging
- This app does not provide medical advice. Use for education and discussion with clinicians.
- If no corpus/index exists, the chat will prompt you to run ingestion+indexing.