Hey there,
Would it be conceivable to have something like
using Turing
import Distributions: ProductNamedTupleDistribution, Uniform, InverseGamma
params_priors = ProductNamedTupleDistribution((m = Uniform(0, 1), s² = InverseGamma(2, 3)))
@model function gdemo(x)
params ~ params_priors
x ~ Normal(params.m, sqrt(params.s²))
end
chain = sample(gdemo(1.2), NUTS(), 1000, progress=false)
supported in Turing.jl at some point? This could be very helpful to handle e.g. Lux.jl models.