Skip to content

Regression model fails on Julia 1.6 beta1 #1525

@itsdfish

Description

@itsdfish

Hi all-

I want to report a model that fails on Julia 1.6 beta1. I tried to run a multilevel model described here. I simplified the model into a linear regression, which runs on Julia 1.5.3

Model:

using Turing
using Distributions
import Random

@model regression(y, X) = begin

  sigma ~ LogNormal()

  beta ~ filldist(Normal(), 1)

  intercept ~ Normal()

  s2 ~ InverseGamma(3, 2)
  s = sqrt(s2)
  
  y .~ Normal.(intercept .+ X * beta, sigma)
end

# Generate data.
Random.seed!(0)
N = 30
X = randn(N, 1)
beta = 1.0
intercept = 1
sigma = .1
y = intercept .+ X * beta + randn(N) * sigma

# Sample via NUTS.
chain = sample(regression(y, X), NUTS(), 2000, progress=true)

Error:

ERROR: LoadError: MethodError: no method matching ~(::Float64, ::Normal{Float64})
Stacktrace:
  [1] _broadcast_getindex_evalf
    @ ./broadcast.jl:648 [inlined]
  [2] _broadcast_getindex
    @ ./broadcast.jl:621 [inlined]
  [3] getindex
    @ ./broadcast.jl:575 [inlined]
  [4] copy
    @ ./broadcast.jl:922 [inlined]
  [5] materialize
    @ ./broadcast.jl:883 [inlined]
  [6] #5
    @ ~/Desktop/temp.jl:89 [inlined]
  [7] (::var"#5#6")(_rng::Random._GLOBAL_RNG, _model::DynamicPPL.Model{var"#5#6", (:y, :X), (), (), Tuple{Matrix{Float64}, Matrix{Float64}}, Tuple{}}, _varinfo::DynamicPPL.ThreadSafeVarInfo{DynamicPPL.UntypedVarInfo{DynamicPPL.Metadata{Dict{DynamicPPL.VarName, Int64}, Vector{Distribution}, Vector{DynamicPPL.VarName}, Vector{Real}, Vector{Set{DynamicPPL.Selector}}}, Float64}, Vector{Base.RefValue{Float64}}}, _sampler::DynamicPPL.SampleFromUniform, _context::DynamicPPL.DefaultContext, y::Matrix{Float64}, X::Matrix{Float64})
    @ Main ./none:0
  [8] macro expansion
    @ ~/.julia/packages/DynamicPPL/u14IH/src/model.jl:0 [inlined]
  [9] _evaluate
    @ ~/.julia/packages/DynamicPPL/u14IH/src/model.jl:154 [inlined]
 [10] evaluate_threadsafe(rng::Random._GLOBAL_RNG, model::DynamicPPL.Model{var"#5#6", (:y, :X), (), (), Tuple{Matrix{Float64}, Matrix{Float64}}, Tuple{}}, varinfo::DynamicPPL.UntypedVarInfo{DynamicPPL.Metadata{Dict{DynamicPPL.VarName, Int64}, Vector{Distribution}, Vector{DynamicPPL.VarName}, Vector{Real}, Vector{Set{DynamicPPL.Selector}}}, Float64}, sampler::DynamicPPL.SampleFromUniform, context::DynamicPPL.DefaultContext)
    @ DynamicPPL ~/.julia/packages/DynamicPPL/u14IH/src/model.jl:144
 [11] Model
    @ ~/.julia/packages/DynamicPPL/u14IH/src/model.jl:94 [inlined]
 [12] VarInfo
    @ ~/.julia/packages/DynamicPPL/u14IH/src/varinfo.jl:126 [inlined]
 [13] VarInfo
    @ ~/.julia/packages/DynamicPPL/u14IH/src/varinfo.jl:125 [inlined]
 [14] step(rng::Random._GLOBAL_RNG, model::DynamicPPL.Model{var"#5#6", (:y, :X), (), (), Tuple{Matrix{Float64}, Matrix{Float64}}, Tuple{}}, spl::DynamicPPL.Sampler{NUTS{Turing.Core.ForwardDiffAD{40}, (), AdvancedHMC.DiagEuclideanMetric}}; resume_from::Nothing, kwargs::Base.Iterators.Pairs{Symbol, Int64, Tuple{Symbol}, NamedTuple{(:nadapts,), Tuple{Int64}}})
    @ DynamicPPL ~/.julia/packages/DynamicPPL/u14IH/src/sampler.jl:73
 [15] macro expansion
    @ ~/.julia/packages/AbstractMCMC/Nw3Wn/src/sample.jl:78 [inlined]
 [16] macro expansion
    @ ~/.julia/packages/ProgressLogging/BBN0b/src/ProgressLogging.jl:328 [inlined]
 [17] macro expansion
    @ ~/.julia/packages/AbstractMCMC/Nw3Wn/src/logging.jl:8 [inlined]
 [18] mcmcsample(rng::Random._GLOBAL_RNG, model::DynamicPPL.Model{var"#5#6", (:y, :X), (), (), Tuple{Matrix{Float64}, Matrix{Float64}}, Tuple{}}, sampler::DynamicPPL.Sampler{NUTS{Turing.Core.ForwardDiffAD{40}, (), AdvancedHMC.DiagEuclideanMetric}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, discard_initial::Int64, thinning::Int64, chain_type::Type, kwargs::Base.Iterators.Pairs{Symbol, Int64, Tuple{Symbol}, NamedTuple{(:nadapts,), Tuple{Int64}}})
    @ AbstractMCMC ~/.julia/packages/AbstractMCMC/Nw3Wn/src/sample.jl:76
 [19] sample(rng::Random._GLOBAL_RNG, model::DynamicPPL.Model{var"#5#6", (:y, :X), (), (), Tuple{Matrix{Float64}, Matrix{Float64}}, Tuple{}}, sampler::DynamicPPL.Sampler{NUTS{Turing.Core.ForwardDiffAD{40}, (), AdvancedHMC.DiagEuclideanMetric}}, N::Int64; chain_type::Type, resume_from::Nothing, progress::Bool, nadapts::Int64, discard_adapt::Bool, discard_initial::Int64, kwargs::Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}})
    @ Turing.Inference ~/.julia/packages/Turing/O1Pn0/src/inference/hmc.jl:140
 [20] #sample#2
    @ ~/.julia/packages/Turing/O1Pn0/src/inference/Inference.jl:143 [inlined]
 [21] #sample#1
    @ ~/.julia/packages/Turing/O1Pn0/src/inference/Inference.jl:133 [inlined]
 [22] top-level scope
    @ ./timing.jl:206 [inlined]
 [23] top-level scope
    @ ~/Desktop/temp.jl:0
in expression starting at /home/dfish/Desktop/temp.jl:102

Version:

Julia 1.6.0 beta1
Turing v0.15.8

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions