- 
                Notifications
    You must be signed in to change notification settings 
- Fork 36
          InitContext, part 3 - Introduce InitContext
          #981
        
          New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 7 commits
3b87baa
              75f69b9
              1988baa
              4d4ffd9
              d24f966
              42d74b6
              ab3e8da
              be8a1b3
              c40a193
              bcfdd93
              9626ae9
              1e4ce9f
              8330d87
              deed931
              6705d7b
              File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change | 
|---|---|---|
| @@ -0,0 +1,176 @@ | ||
| """ | ||
| AbstractInitStrategy | ||
| Abstract type representing the possible ways of initialising new values for | ||
| the random variables in a model (e.g., when creating a new VarInfo). | ||
| There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Could this have a list of functions subtypes must implement methods for? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Good call, done. | ||
| """ | ||
| abstract type AbstractInitStrategy end | ||
|  | ||
| """ | ||
| init(rng::Random.AbstractRNG, vn::VarName, dist::Distribution, strategy::AbstractInitStrategy) | ||
| Generate a new value for a random variable with the given distribution. | ||
| !!! warning "Values must be unlinked" | ||
| The values returned by `init` are always in the untransformed space, i.e., | ||
| they must be within the support of the original distribution. That means that, | ||
| for example, `init(rng, dist, u::UniformInit)` will in general return values that | ||
|          | ||
| are outside the range [u.lower, u.upper]. | ||
| """ | ||
| function init end | ||
|  | ||
| """ | ||
| PriorInit() | ||
| Obtain new values by sampling from the prior distribution. | ||
| """ | ||
| struct PriorInit <: AbstractInitStrategy end | ||
| init(rng::Random.AbstractRNG, ::VarName, dist::Distribution, ::PriorInit) = rand(rng, dist) | ||
|  | ||
| """ | ||
| UniformInit() | ||
| UniformInit(lower, upper) | ||
| Obtain new values by first transforming the distribution of the random variable | ||
| to unconstrained space, then sampling a value uniformly between `lower` and | ||
| `upper`, and transforming that value back to the original space. | ||
| If `lower` and `upper` are unspecified, they default to `(-2, 2)`, which mimics | ||
| Stan's default initialisation strategy. | ||
| Requires that `lower <= upper`. | ||
| # References | ||
| [Stan reference manual page on initialization](https://mc-stan.org/docs/reference-manual/execution.html#initialization) | ||
| """ | ||
| struct UniformInit{T<:AbstractFloat} <: AbstractInitStrategy | ||
| lower::T | ||
| upper::T | ||
| function UniformInit(lower::T, upper::T) where {T<:AbstractFloat} | ||
| lower > upper && | ||
| throw(ArgumentError("`lower` must be less than or equal to `upper`")) | ||
| return new{T}(lower, upper) | ||
| end | ||
| UniformInit() = UniformInit(-2.0, 2.0) | ||
| end | ||
| function init(rng::Random.AbstractRNG, ::VarName, dist::Distribution, u::UniformInit) | ||
| b = Bijectors.bijector(dist) | ||
| sz = Bijectors.output_size(b, size(dist)) | ||
| y = u.lower .+ ((u.upper - u.lower) .* rand(rng, sz...)) | ||
| b_inv = Bijectors.inverse(b) | ||
| x = b_inv(y) | ||
| # 0-dim arrays: https://github.com/TuringLang/Bijectors.jl/issues/398 | ||
| if x isa Array{<:Any,0} | ||
| x = x[] | ||
| end | ||
| return x | ||
| end | ||
|  | ||
| """ | ||
| ParamsInit(params::AbstractDict{<:VarName}, default::AbstractInitStrategy=PriorInit()) | ||
| ParamsInit(params::NamedTuple, default::AbstractInitStrategy=PriorInit()) | ||
| Obtain new values by extracting them from the given dictionary or NamedTuple. | ||
| The parameter `default` specifies how new values are to be obtained if they | ||
| cannot be found in `params`, or they are specified as `missing`. The default | ||
| for `default` is `PriorInit()`. | ||
| !!! note | ||
| These values must be provided in the space of the untransformed distribution. | ||
| """ | ||
| struct ParamsInit{P,S<:AbstractInitStrategy} <: AbstractInitStrategy | ||
| params::P | ||
| default::S | ||
| function ParamsInit(params::AbstractDict{<:VarName}, default::AbstractInitStrategy) | ||
| return new{typeof(params),typeof(default)}(params, default) | ||
| end | ||
| ParamsInit(params::AbstractDict{<:VarName}) = ParamsInit(params, PriorInit()) | ||
| function ParamsInit(params::NamedTuple, default::AbstractInitStrategy=PriorInit()) | ||
| return ParamsInit(to_varname_dict(params), default) | ||
| end | ||
| end | ||
| function init(rng::Random.AbstractRNG, vn::VarName, dist::Distribution, p::ParamsInit) | ||
| # TODO(penelopeysm): It would be nice to do a check to make sure that all | ||
| # of the parameters in `p.params` were actually used, and either warn or | ||
| # error if they aren't. This is actually quite non-trivial though because | ||
| # the structure of Dicts in particular can have arbitrary nesting. | ||
| return if hasvalue(p.params, vn, dist) | ||
| x = getvalue(p.params, vn, dist) | ||
| if x === missing | ||
| init(rng, vn, dist, p.default) | ||
|          | ||
| else | ||
| # TODO(penelopeysm): Since x is user-supplied, maybe we could also | ||
| # check here that the type / size of x matches the dist? | ||
| x | ||
| end | ||
| else | ||
| init(rng, vn, dist, p.default) | ||
| end | ||
| end | ||
|  | ||
| """ | ||
| InitContext( | ||
| [rng::Random.AbstractRNG=Random.default_rng()], | ||
| [strategy::AbstractInitStrategy=PriorInit()], | ||
| ) | ||
| A leaf context that indicates that new values for random variables are | ||
| currently being obtained through sampling. Used e.g. when initialising a fresh | ||
| VarInfo. Note that, if `leafcontext(model.context) isa InitContext`, then | ||
| `evaluate!!(model, varinfo)` will override all values in the VarInfo. | ||
| """ | ||
| struct InitContext{R<:Random.AbstractRNG,S<:AbstractInitStrategy} <: AbstractContext | ||
| rng::R | ||
| strategy::S | ||
| function InitContext( | ||
| rng::Random.AbstractRNG, strategy::AbstractInitStrategy=PriorInit() | ||
| ) | ||
| return new{typeof(rng),typeof(strategy)}(rng, strategy) | ||
| end | ||
| function InitContext(strategy::AbstractInitStrategy=PriorInit()) | ||
| return InitContext(Random.default_rng(), strategy) | ||
| end | ||
| end | ||
| NodeTrait(::InitContext) = IsLeaf() | ||
|  | ||
| function tilde_assume( | ||
| ctx::InitContext, dist::Distribution, vn::VarName, vi::AbstractVarInfo | ||
| ) | ||
| in_varinfo = haskey(vi, vn) | ||
| # `init()` always returns values in original space, i.e. possibly | ||
| # constrained | ||
| x = init(ctx.rng, vn, dist, ctx.strategy) | ||
| # Determine whether to insert a transformed value into the VarInfo. | ||
| # If the VarInfo alrady had a value for this variable, we will | ||
| # keep the same linked status as in the original VarInfo. If not, we | ||
| # check the rest of the VarInfo to see if other variables are linked. | ||
| # istrans(vi) returns true if vi is nonempty and all variables in vi | ||
| # are linked. | ||
| insert_transformed_value = in_varinfo ? istrans(vi, vn) : istrans(vi) | ||
| f = if insert_transformed_value | ||
| link_transform(dist) | ||
| else | ||
| identity | ||
| end | ||
| y, logjac = with_logabsdet_jacobian(f, x) | ||
| # Add the new value to the VarInfo. `push!!` errors if the value already | ||
| # exists, hence the need for setindex!!. | ||
| if in_varinfo | ||
| vi = setindex!!(vi, y, vn) | ||
| else | ||
| vi = push!!(vi, vn, y, dist) | ||
| end | ||
| # Neither of these set the `trans` flag so we have to do it manually if | ||
| # necessary. | ||
| insert_transformed_value && settrans!!(vi, true, vn) | ||
| # `accumulate_assume!!` wants untransformed values as the second argument. | ||
| vi = accumulate_assume!!(vi, x, logjac, vn, dist) | ||
| # We always return the untransformed value here, as that will determine | ||
| # what the lhs of the tilde-statement is set to. | ||
| return x, vi | ||
| end | ||
|  | ||
| function tilde_observe!!(::InitContext, right, left, vn, vi) | ||
| return tilde_observe!!(DefaultContext(), right, left, vn, vi) | ||
| end | ||
Uh oh!
There was an error while loading. Please reload this page.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This code was shifted verbatim to
src/model.jlto avoid circular dependencies between files.